Classification of white blood cells using deep features obtained from Convolutional Neural Network models based on the combination of feature selection methods

2020 ◽  
Vol 97 ◽  
pp. 106810
Author(s):  
Mesut Toğaçar ◽  
Burhan Ergen ◽  
Zafer Cömert
2019 ◽  
Vol 25 (5) ◽  
pp. 63-68 ◽  
Author(s):  
Mesut Togacar ◽  
Burhan Ergen ◽  
Mehmet Emre Sertkaya

The white blood cells produced in the bone marrow and lymphoid tissue known as leucocytes are an important part of the immune system to protect the body against foreign invaders and infectious disease. These cells, which do not have color, have a few days or several weeks of life. A lot of clinic experience is required for a doctor to detect the amount of white blood cells in human blood and classify it. Thus, early and accurate diagnosis can be made in the formation of various disease types, including infection on the immune system, such as anemia and leukemia, while evaluating and determining the disease of a patient. The white blood cells can be separated into four subclasses, such as Eosinophil, Lymphocyte, Monocyte, and Neutrophil. This study focuses on the separation of the white blood cell images by the classification process using convolutional neural network models, which is a deep learning model. A deep learning network, which is slow in the training step due to the complex architecture, but fast in the test step, is used for the feature extraction instead of intricate methods. For the subclass separation of white blood cells, the experimental results show that the AlexNet architecture gives the correct recognition rate among the convolutional neural network architectures tested in the study. Various classifiers are performed on the features derived from the AlexNet architecture to evaluate the classification performance. The best performance in the classification of white blood cells is given by the quadratic discriminant analysis classifier with the accuracy of 97.78 %.


2020 ◽  
Vol 43 (12) ◽  
Author(s):  
Sriram K. Vidyarthi ◽  
Samrendra K. Singh ◽  
Rakhee Tiwari ◽  
Hong‐Wei Xiao ◽  
Rewa Rai

2018 ◽  
Vol 339 ◽  
pp. 615-624 ◽  
Author(s):  
Shaohua Chen ◽  
Laurent A. Baumes ◽  
Aytekin Gel ◽  
Manogna Adepu ◽  
Heather Emady ◽  
...  

Author(s):  
Yilin Yan ◽  
Min Chen ◽  
Saad Sadiq ◽  
Mei-Ling Shyu

The classification of imbalanced datasets has recently attracted significant attention due to its implications in several real-world use cases. The classifiers developed on datasets with skewed distributions tend to favor the majority classes and are biased against the minority class. Despite extensive research interests, imbalanced data classification remains a challenge in data mining research, especially for multimedia data. Our attempt to overcome this hurdle is to develop a convolutional neural network (CNN) based deep learning solution integrated with a bootstrapping technique. Considering that convolutional neural networks are very computationally expensive coupled with big training datasets, we propose to extract features from pre-trained convolutional neural network models and feed those features to another full connected neutral network. Spark implementation shows promising performance of our model in handling big datasets with respect to feasibility and scalability.


2018 ◽  
Vol 21 (1) ◽  
pp. 65-80
Author(s):  
Amin Edraki ◽  
AbolHassan Razminia ◽  
◽  

Author(s):  
Yilin Yan ◽  
Min Chen ◽  
Saad Sadiq ◽  
Mei-Ling Shyu

The classification of imbalanced datasets has recently attracted significant attention due to its implications in several real-world use cases. The classifiers developed on datasets with skewed distributions tend to favor the majority classes and are biased against the minority class. Despite extensive research interests, imbalanced data classification remains a challenge in data mining research, especially for multimedia data. Our attempt to overcome this hurdle is to develop a convolutional neural network (CNN) based deep learning solution integrated with a bootstrapping technique. Considering that convolutional neural networks are very computationally expensive coupled with big training datasets, we propose to extract features from pre-trained convolutional neural network models and feed those features to another full connected neutral network. Spark implementation shows promising performance of our model in handling big datasets with respect to feasibility and scalability.


Sign in / Sign up

Export Citation Format

Share Document