Qualitative estimation of magnetic storm efficiency in producing relativistic electron flux in the Earth’s outer radiation belt using geomagnetic pulsations data

2009 ◽  
Vol 43 (5) ◽  
pp. 829-836 ◽  
Author(s):  
V.I. Degtyarev ◽  
I.P. Kharchenko ◽  
A.S. Potapov ◽  
B. Tsegmed ◽  
S.E. Chudnenko
2000 ◽  
Vol 105 (A9) ◽  
pp. 21211-21223 ◽  
Author(s):  
L. Desorgher ◽  
P. Bühler ◽  
A. Zehnder ◽  
E. O. Flückiger

2020 ◽  
Author(s):  
Tulsi Thapa ◽  
Binod Adhikari ◽  
Prashrit Baruwal ◽  
Kiran Pudasainee

Abstract. We analyzed the relativistic electron fluxes (E > 2 MeV) during three different geomagnetic storms: moderate, intense, and super-intense and one geo-magnetically quiet period. We have opted Continuous wavelet analysis and cross-correlation technique to extend current understanding and of the radiation-belt dynamics. We found that the fluctuation of relativistic electron fluxes dependent basically on prolonged southward interplanetary magnetic field IMF-Bz. Cross-correlation analysis depicted that SYM-H does not show a strong connection either with relativistic electron enhancement events or persistent depletion events. Our result supports the fact that geomagnetic storms are not a primary factor that pumps up the radiation belt. In fact they seem event specific; either depletion or enhancement or slight effect on the outer radiation belt might be observed depending on the event. Solar wind pressure and velocity were found to be highly and positively correlated with relativistic electron. We found that, the count of relativistic electron flux (> 2 MeV) decreases during the main phase of geomagnetic storm with the increase in – from quiet to super intense storm – geomagnetic storm conditions (Table 1). However, Psw was found to be weakly correlated in case of intense storms following an abrupt increase of electron flux for ~ 4 hrs, which is interesting and unique.


2017 ◽  
Vol 57 (1) ◽  
pp. 8-15 ◽  
Author(s):  
I. N. Myagkova ◽  
S. A. Dolenko ◽  
A. O. Efitorov ◽  
V. R. Shirokii ◽  
N. S. Sentemova

2007 ◽  
Vol 47 (6) ◽  
pp. 696-703 ◽  
Author(s):  
L. V. Tverskaya ◽  
E. A. Ginzburg ◽  
T. A. Ivanova ◽  
N. N. Pavlov ◽  
P. M. Svidsky

2020 ◽  
Author(s):  
Artem Smirnov ◽  
Max Berrendorf ◽  
Yuri Shprits ◽  
Elena A. Kronberg ◽  
Hayley J Allison ◽  
...  

2021 ◽  
Author(s):  
Christopher Lara ◽  
Pablo S. Moya ◽  
Victor Pinto ◽  
Javier Silva ◽  
Beatriz Zenteno

<p>The inner magnetosphere is a very important region to study, as with satellite-based communications increasing day after day, possible disruptions are especially relevant due to the possible consequences in our daily life. It is becoming very important to know how the radiation belts behave, especially during strong geomagnetic activity. The radiation belts response to geomagnetic storms and solar wind conditions is still not fully understood, as relativistic electron fluxes in the outer radiation belt can be depleted, enhanced or not affected following intense activity. Different studies show how these results vary in the face of different events. As one of the main mechanisms affecting the dynamics of the radiation belt are wave-particle interactions between relativistic electrons and ULF waves. In this work we perform a statistical study of the relationship between ULF wave power and relativistic electron fluxes in the outer radiation belt during several geomagnetic storms, by using magnetic field and particle fluxes data measured by the Van Allen Probes between 2012 and 2017. We evaluate the correlation between the changes in flux and the cumulative effect of ULF wave activity during the main and recovery phases of the storms for different position in the outer radiation belt and energy channels. Our results show that there is a good correlation between the presence of ULF waves and the changes in flux during the recovery phase of the storm and that correlations vary as a function of energy. Also, we can see in detail how the ULF power change for the electron flux at different L-shell We expect these results to be relevant for the understanding of the relative role of ULF waves in the enhancements and depletions of energetic electrons in the radiation belts for condition described.</p>


Sign in / Sign up

Export Citation Format

Share Document