strong magnetic storm
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 44 ◽  
pp. 12-15
Author(s):  
I.V. Despirak ◽  
◽  
N.G. Kleimenova ◽  
A.A. Lubchich ◽  
P.V. Setsko ◽  
...  

For this analysis, we selected the supersubstorm (SSS) occurred during the strong magnetic storm on 28 May 2011 (SYM/H~100 nT). The ground-based magnetic effects of SSS have been studied basing on the data from the global SuperMAG, INTERMAGNET and IMAGE magnetometer networks, as well as on the magnetic measurements by the ionospheric satellite AMPERE system. According to the SML- index behavior, the SSS event maximum was identified at ~09:00 UT on 28 May 2011 (SML= ~-2600 nT). The SSS occurred during the passage of the magnetic cloud in the solar wind. Before the SSS, the BZ component of the Interplanetary Magnetic Field (IMF) was negative, the IMF BY component was positive, and the local jump in the solar wind dynamic pressure was registered. We found that the SSS developed in the magnetosphere in the global scale. A strong westward electrojet was observed at auroral latitudes from the evening side to the dayside. In contrast to the typical scenario of a classical substorm, a very intense eastward electrojet was detected in the afternoon-evening sector. That may be a result of the formation of an additional partial ring current during the supersubstorm.


2020 ◽  
Vol 6 (3) ◽  
pp. 40-47
Author(s):  
Olga Danilova ◽  
Natalia Ptitsyna ◽  
Marta Tyasto ◽  
Valeriy Sdobnov

We have studied the latitude behavior of cosmic ray cutoff rigidity and their sensitivity to Bz and By components of the interplanetary magnetic field and geomagnetic activity indices Dst and Kp for different phases of the November 7–8, 2004 strong magnetic storm. Cutoff rigidities have been calculated using two methods: the spectrographic global survey method in which the cutoff rigidity is determined from observational data, acquired by the neutron monitor network, and the method in which particle trajectories are calculated numerically in a model magnetic field of the magnetosphere. We have found that the sensitivity of observed cutoff rigidities to Dst changes with latitude (threshold rigidity of stations) is in antiphase with changes in the sensitivity to By. During the recovery phase of the storm, the Dst correlation with By is significantly greater than that with Bz, and the Kp correlation with Bz is greater than that with By. The By component is shown to be a predominant driver of the current systems that determine the Dst evolution during the recovery phase.


2020 ◽  
Vol 6 (3) ◽  
pp. 34-39
Author(s):  
Olga Danilova ◽  
Natalia Ptitsyna ◽  
Marta Tyasto ◽  
Valeriy Sdobnov

We have studied the latitude behavior of cosmic ray cutoff rigidity and their sensitivity to Bz and By components of the interplanetary magnetic field and geomagnetic activity indices Dst and Kp for different phases of the November 7–8, 2004 strong magnetic storm. Cutoff rigidities have been calculated using two methods: the spectrographic global survey method in which the cutoff rigidity is determined from observational data, acquired by the neutron monitor network, and the method in which particle trajectories are calculated numerically in a model magnetic field of the magnetosphere. We have found that the sensitivity of observed cutoff rigidities to Dst changes with latitude (threshold rigidity of stations) is in antiphase with changes in the sensitivity to By. During the recovery phase of the storm, the Dst correlation with By is significantly greater than that with Bz, and the Kp correlation with Bz is greater than that with By. The By component is shown to be a predominant driver of the current systems that determine the Dst evolution during the recovery phase.


2020 ◽  
Author(s):  
Galina Korotova ◽  
David Sibeck ◽  
Mark Engebretson

<p>We use  multipoint magnetic field, plasma  and particle observations to study the spatial, temporal  and spectral characteristics of Pc 4-5 pulsations   observed  in the recovery phase of a strong magnetic storm on January 1, 2016.   The magnetosphere was compressed and periodic increases of the total magnetic field strength occurred every 20-40 min at the times of generation of the pulsations.  The frequencies of the Pc4 pulsations varied  from 14 mHz to 25 mHz with radial distance. An explanation for this behavior can be given in terms of standing Alfvén waves along resonant field lines.  By contrast, Fourier analysis of the magnetic field observations  shows that the compressional  Pc5 pulsations  exhibited  similar spectra at different radial distances.  The long duration of the Pc5 pulsations and their nearly constant frequencies indicate that the plasma conditions in the morning sector of magnetosphere were stable for more than two hours.  The Pc4 and Pc5   pulsations displayed wave properties consistent with the second harmonic waves. The energetic particles   observed by Van Allen Probes and GOES 15  exhibited  a regular periodicity over a  broad range of energies from tens of eV to 2 MeV  with periods  corresponding to  those of the compressional component   of the  ULF magnetic field.   We searched for possible solar wind triggers and discussed generation mechanisms for the compressional Pc5 pulsations  in terms of drift mirror instability and  drift bounce resonance. </p>


2019 ◽  
Vol 127 ◽  
pp. 01010
Author(s):  
Irina Despirak ◽  
Natalia Kleimenova ◽  
Liudmila Gromova ◽  
Sergey Gromov ◽  
Liudmila Malysheva

We analyzed the appearance of two supersubstorms observed during storm on September 07, 2017. Supersubstorms (SSS) are called substorms with SML index < - 2500 nT. The storm on September 07, 2017 is famous event which was studied already in many papers. There were two several geomagnetic storms on 7 and 8 September 2017, which associated with two consecutive solar wind structures: SHEATH with EJECTA and SHEATH with magnetic cloud (MC). Because the first SHEATH have a positive IMF Bz on their front edge the substorm activity absent in this time. The main phase of the first magnetic storm began with arriving the second SHEATH with the strong negative IMF Bz. During this period the first night-side supersubstorm (up to ~ 3500 nT) developed. The second magnetic storm was caused by MC with the negative IMF Bz and the severe night-side supersubstorm (up to ~ 3500 nT) were registered in this time. Thus, during the 7-8 September 2017 storms, two supersubstorms were generated, these supersubstorms caused by the SHEATH and MC impact have demonstrated the global scale distribution.


2018 ◽  
Vol 36 (2) ◽  
pp. 621-631 ◽  
Author(s):  
Peter Stauning

Abstract. The Polar Cap (PC) indices were approved by the International Association for Geomagnetism and Aeronomy (IAGA) in 2013 and made available at the web portal http://pcindex.org holding prompt (real-time) as well as archival index values. The present note provides the first reported examination of the validity of the IAGA-endorsed method to generate real-time PC index values. It is demonstrated that features of the derivation procedure defined by Janzhura and Troshichev (2011) may cause considerable excursions in the real-time PC index values compared to the final index values. In examples based on occasional downloads of index values, the differences between real-time and final values of PC indices were found to exceed 3 mV m−1, which is a magnitude level that may indicate (or hide) strong magnetic storm activity. Keywords. Magnetospheric physics (solar wind–magnetosphere interactions; polar cap phenomena) – ionosphere (modelling and forecasting)


2017 ◽  
Vol 60 (5) ◽  
pp. 355-373 ◽  
Author(s):  
V. P. Uryadov ◽  
A. A. Kolchev ◽  
G. G. Vertogradov ◽  
F. I. Vybornov ◽  
I. A. Egoshin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document