Simulation of the outer radiation belt electron flux decrease during the March 26, 1995, magnetic storm

2000 ◽  
Vol 105 (A9) ◽  
pp. 21211-21223 ◽  
Author(s):  
L. Desorgher ◽  
P. Bühler ◽  
A. Zehnder ◽  
E. O. Flückiger
2007 ◽  
Vol 47 (6) ◽  
pp. 696-703 ◽  
Author(s):  
L. V. Tverskaya ◽  
E. A. Ginzburg ◽  
T. A. Ivanova ◽  
N. N. Pavlov ◽  
P. M. Svidsky

2020 ◽  
Author(s):  
Artem Smirnov ◽  
Max Berrendorf ◽  
Yuri Shprits ◽  
Elena A. Kronberg ◽  
Hayley J Allison ◽  
...  

2020 ◽  
Author(s):  
Xiaofei Shi ◽  
Jie Ren ◽  
Qiugang Zong

<p>We present a statistical study of energy-dependent and L shell-dependent inner boundary of the outer radiation belt during 37 isolated geomagnetic storms using observations from Van Allen Probes from 2013 to 2017. There are mutual transformations between "V-shaped" and "S-shaped" inner boundaries during different storm phases, resulting from the competition among electron loss, radial transport and local acceleration. The radial position, onset time, E<sub>st</sub> (the minimum energy at L<sub>st</sub> where the inner boundary starts to exhibit an S-shaped form), and the radial width of S-shaped boundary (ΔL) are quantitatively defined according to the formation of a reversed energy spectrum (electron flux going up with increasing energies from hundreds of keV to ~1 MeV) from a kappa-like spectrum (electron flux steeply falling with increasing energies). The case and statistical results present that (1) The inner boundary has repeatable features associated with storms: the inner boundary is transformed from S-shaped to V-shaped form in several hours during the storm commencement and main phase, and retains in the V-shaped form for several days until it evolves into S-shaped during late recovery phase; (2) ΔL shows positive correlation with SYM-H index; (3) The duration of the V-shaped form is positively correlated with the storm intensity and the duration of the recovery phase; (4) The minimum energy E<sub>st</sub> are mainly distributed in the range of 100-550 keV. All these findings have important implications for understanding the dynamics of energetic electrons in the slot region and the outer radiation belt during geomagnetic storms.</p>


2018 ◽  
Vol 4 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Леонид Лазутин ◽  
Leonid Lazutin ◽  
Алексей Дмитриев ◽  
Aleksey Dmitriev ◽  
Алла Суворова ◽  
...  

The paper discusses the dynamics of the outer electron belt, adiabatic and nonadiabatic mechanisms of replenishment and losses of energetic electrons. Under undisturbed conditions, the outer electron belt gradually empties: in the inner magnetosphere due to electron precipitation in the atmosphere and in the quasi-trapping region due to losses at the magnetopause because drift shells of electrons are not closed there. The latter process does not occur in normal years due to the masking replenishment by freshly accelerated particles, but in years of extremely low activity it leads to a significant decrease in the electron population of the belt. During the magnetic storm main phase, the first reason for the decrease in the electron flux intensity is the adiabatic cooling associated with conservation of adiabatic invariants and complemented by precipitation of electrons into the atmosphere and their dropout at the magnetopause. Electron flux increases involve EB electron injection by the induction electric field of substorm activation and by the large-scale solar wind electric field, with pitch energy diffusion along with adiabatic heating in the recovery phase. The rate of electron flux recovery after a storm is determined by the ratio of nonadiabatic increases and losses; hence the electron flux represents a continuous series from low to very high values. The combination of these processes determines the individual character of radiation belt development during each magnetic storm and the behavior of the belt in the quiet time.


Sign in / Sign up

Export Citation Format

Share Document