Short-time proper orthogonal decomposition of time-resolved schlieren images for transient jet screech characterization

2020 ◽  
Vol 107 ◽  
pp. 106276
Author(s):  
H.D. Lim ◽  
X.F. Wei ◽  
B. Zang ◽  
U S Vevek ◽  
R. Mariani ◽  
...  
Author(s):  
Moritz Sieber ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

We present an application of a newly introduced method to analyze the time-resolved experimental data from the flow field of a swirl-stabilized combustor. This method is based on classic proper orthogonal decomposition (POD) extended by a temporal constraint. The filter operation embedded in this method allows for continuous fading from the classic POD to the Fourier mode decomposition. This new method — called spectral proper orthogonal decomposition (SPOD) — allows for a clearer separation of the dominant mechanisms due to a clean spectral separation of phenomena. In this paper, the fundamentals of SPOD are shortly introduced. The actual focus is put on the application to a combustor flow. We analyze high-speed PIV measurements from flow fields in a combustor at different operation conditions. In these measurements, we consider externally actuated, as well as natural dynamics and reveal how the natural and actuated modes interact with each other. As shown in the paper, SPOD provides detailed insight into coherent structures in swirl flames. Two distinct PVC structures are found that are very differently affected by acoustic actuation. The coherent structures are related to heat release fluctuations, which are derived from simultaneously acquired OH* chemiluminescence measurements. Besides the actuated modes, a low frequency mode was found that significantly contribute to the global heat release fluctuations.


Author(s):  
Hanyang Zhuang ◽  
David L. S. Hung ◽  
Hao Chen

The structure of in-cylinder flow field makes significant impacts on the processes of spray injection, air-fuel interactions, and flame development in internal combustion engines. In this study, the implementation of time-resolved Particle Image Velocimetry (PIV) in an optical engine is presented. Images at different crank angles have been taken using a high-speed double-pulsed laser and a high-speed camera with seeding particles mixed with the intake air. This study is focused on measuring the flow fields along the swirl plane at 30 mm below the injector tip under different intake air swirl ratios. A simple algorithm is presented to identify the vortex structure and to track the location and motion of vortex center at different crank angles. Proper Orthogonal Decomposition (POD) has been used to extract the ensemble and variation information of the vortex structure. Experimental results reveal that strong cycle-to-cycle variations exist in almost all test conditions. The vortex center is difficult to identify since multiple, but small scale, vortices exist during the early stage of the intake stroke. However, during the compression stroke when only one vortex center exists in most cycles, the motion of vortex center is found to be quite similar at different intake swirl ratios and engine speeds. This is due to the dominant driving force exerted by the piston’s upward motion on the in-cylinder air.


Sign in / Sign up

Export Citation Format

Share Document