scholarly journals A new many-objective aerodynamic optimization method for symmetrical elliptic airfoils by PSO and direct-manipulation-based parametric mesh deformation

2021 ◽  
pp. 107296
Author(s):  
Baigang Mi ◽  
Shixin Cheng ◽  
Yu Luo ◽  
Huayu Fan
Author(s):  
Hao Sun ◽  
Jun Li ◽  
Liming Song ◽  
Zhenping Feng

The non-axisymmetric endwall profiling has been proven to be an effective tool to reduce the secondary flow loss in turbomachinery. In this work, the aerodynamic optimization for the non-axisymmetric endwall profile of the turbine cascade and stage was presented and the design results were validated by annular cascade experimental measurements and numerical simulations. The parametric method of the non-axisymmetric endwall profile was proposed based on the relation between the pressure field variation and the secondary flow intensity. The optimization system combines with the non-axisymmetric endwall parameterization method, global optimization method of the adaptive range differential evolution algorithm and the aerodynamic performance evaluation method using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and k–ω SST turbulent with transition model solutions. In the part I, the optimization method is used to design the optimum non-axisymmetric endwall profile of the typical high loaded turbine stator. The design objective was selected for the maximum total pressure coefficient with constrains on the mass flow rate and outlet flow angle. Only five design variables are needed for one endwall to search the optimum non-axisymmetric endwall profile. The optimized non-axisymmetric endwall profile of turbine cascade demonstrated an improvement of total pressure coefficient of 0.21% absolutely, comparing with the referenced axisymmetric endwall design case. The reliability of the numerical calculation used in the aerodynamic performance evaluation method and the optimization result were validated by the annular vane experimental measurements. The static pressure distribution at midspan was measured while the cascade flow field was measured with the five-hole probe for both the referenced axisymmetric and optimized non-axisymmetric endwall profile cascades. Both the experimental measurements and numerical simulations demonstrated that both the secondary flow losses and the profile loss of the optimized non-axisymmetric endwall profile cascade were significantly reduced by comparison of the referenced axisymmetric case. The weakening of the secondary flow of the optimized non-axisymmetric endwall profile design was also proven by the secondary flow vector results in the experiment. The detailed flow mechanism of the secondary flow losses reduction in the non-axisymmetric endwall profile cascade was analyzed by investigating the relation between the change of the pressure gradient and the variation of the secondary flow intensity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shuyi Zhang ◽  
Bo Yang

Abstract In this paper, an improved aerodynamic performance optimization method for 3-D low Reynolds number (Re) rotor blade is proposed. A conventional optimization procedure of blade is usually divided into three parts, such as the parameterization method, the fitness value evaluation and the optimization algorithm. This work is mainly focused on the first two parts. The parametrization method, Camber-FFD, is presented based on the camber parametrization method and the free-form deformation algorithm (FFD). The shape of 3-D blade is parameterized by the incidence angles and the coordinates of the maximum camber points. The fitness value evaluation has been realized with the help of an adaptive topological back propagation multi-layer forward artificial neural network (BP-MLFANN). During the training of BP-MLFANN, the hybrid particle swarm optimization method combined with the modified very fast simulate annealing algorithm (HPSO-MVFSA) is adopted to determine the neural network topology adaptively. To verify the effectiveness of this aerodynamic optimization method, the aerodynamic performance of a 3-D low-Re blade, such as Blade D900, is optimized, and the results are compared and analyzed based on the experiments and simulations. It is proved that this aerodynamic optimization method is feasible.


2014 ◽  
Vol 54 (6) ◽  
pp. 420-425 ◽  
Author(s):  
Martin Lahuta ◽  
Zdeněk Pátek ◽  
András Szöllös

An optimization method consisting of genetic and evolution optimization algorithm and a solver using nonlinear aerodynamics was applied on design of low-speed wing. Geometric parameterization of wing uses standard geometric quantities commonly used for the description of wing geomtery. The method seems to provide good teliable results at low computer capacity requirements.


Author(s):  
Omar Elshamy ◽  
Nidal Ghizawi ◽  
Ce´line Yon ◽  
Simone Pazzi ◽  
Denis Guenard

This paper presents an automated aerodynamic optimization procedure for the preliminary design of centrifugal compressors. The proposed procedure interfaces a well-validated prediction tool with a GE in-house developed optimization code (PEZ). In GE Oil & Gas this tool is used to predict the performance of a single centrifugal compressor stage the outline of which requires more than thirty geometric parameters to be set. In the early phase of a new stage design, the designer manually varies all related parameters in the framework of a trial-and-error approach. The optimization procedure eliminates the inconvenience of a vast amount of manually launched simulations required by variations of the large number of design variables. Additionally, this procedure can perform trade-off studies and sensitivity analysis. In this case the optimization plan consists of a differential evolution (DE) genetic algorithm followed by a simplex-based optimization method (AMOEBA). The procedure was challenged with several existing designs by setting different objective/constraints combinations. The optimizer was often able to improve the predicted performance, as for an old 2D design where it was possible to increase the peak efficiency of approximately 2.6%. Also, the algorithm proved able to maximize the polytropic head (+12% with respect to baseline), while keeping unaltered both surge and choke limits. The computational time was about 40 hours per case on a Windows workstation (3.20 GHz, 3.5 GB RAM).


2008 ◽  
Vol 4 (4) ◽  
pp. 385-392 ◽  
Author(s):  
GAO Hangshan ◽  
HAN Yongzhi ◽  
ZHANG Juan ◽  
YUE Zhufeng

Based on aerodynamic analysis, an optimization method for the profiles of turbine blade is studied in this paper. This method is capable of addressing multiple objectives and constrains without relying on user input. A quintic polynomial is used to build the three‐dimensional blade model and a three dimensional Navier‐Stokes solver was used to solve the flow field around the turbine blade. The objective functions are the turbine aerodynamic efficiency and total pressure ratio. The optimization is completed with the K‐S function technique and accelerated by approximation technique. Finally, the proposed method is applied to optimizing a true blade to validate its accuracy and efficiency. The obtained result shows that the approximation method is more efficient and accurate than the conventional method.


Author(s):  
Yiping Wang ◽  
Cheng Wu ◽  
Gangfeng Tan ◽  
Yadong Deng

Numerical investigations are carried out to investigate the reduction in the aerodynamic drag of a vehicle by employing a dimpled non-smooth surface. The computational scheme was validated by the experimental data reported in literature. The mechanism and the effect of the dimpled non-smooth surface on the drag reduction were revealed by analysing the flow field structure of the wake. In order to maximize the drag reduction performance of the dimpled non-smooth surface, an aerodynamic optimization method based on a Kriging surrogate model was employed to design the dimpled non-smooth surface. Four structure parameters were selected as the design variables, and a 16-level design-of-experiments method based on orthogonal arrays was used to analyse the sensitivities and the influences of the variables on the drag coefficient; a surrogate model was constructed from these. Then a multi-island genetic algorithm was employed to obtain the optimal solution for the surrogate model. Finally, the surrogate model and the simulation results showed that the optimal combination of design variables can reduce the aerodynamic drag coefficient by 5.20%.


2019 ◽  
Vol 16 (08) ◽  
pp. 1841004 ◽  
Author(s):  
Thang Le-Duc ◽  
Quoc-Hung Nguyen

In this work, a new approach for aerodynamic optimization of horizontal axis wind turbine (HAWT) airfoil is presented. This technique combines commercial computational fluid dynamics (CFD) codes with differential evolution (DE), a reliable gradient-free global optimization method. During the optimization process, commercial CFD codes are used to evaluate aerodynamic characteristics of HAWT airfoil and an improved DE algorithm is utilized to find the optimal airfoil design. The objective of this research is to maximize the aerodynamic coefficients of HAWT airfoil at the design angle of attack (AOA) with specific ambient environment. The airfoil shape is modeled by control points which their coordinates are design variables. The reliability of CFD codes is validated by comparing the analytical results of a typical HAWT airfoil with its experimental data. Finally, the optimal design of wind turbine airfoil is evaluated about aerodynamic performance in comparison with existing airfoils and some discussions are performed.


Sign in / Sign up

Export Citation Format

Share Document