Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy)

2007 ◽  
Vol 41 (35) ◽  
pp. 7377-7388 ◽  
Author(s):  
E. Bagnato ◽  
A. Aiuppa ◽  
F. Parello ◽  
S. Calabrese ◽  
W. D’Alessandro ◽  
...  
2007 ◽  
Vol 165 (1-2) ◽  
pp. 71-75 ◽  
Author(s):  
Anna Brogna ◽  
Santo La Delfa ◽  
Viviana La Monaca ◽  
Salvatore Lo Nigro ◽  
Daniela Morelli ◽  
...  

2014 ◽  
Vol 277 ◽  
pp. 36-40 ◽  
Author(s):  
F. D'Ajello Caracciolo ◽  
I. Nicolosi ◽  
R. Carluccio ◽  
S. Chiappini ◽  
R. De Ritis ◽  
...  

2021 ◽  
Vol 263 ◽  
pp. 112524
Author(s):  
Michele Saroli ◽  
Matteo Albano ◽  
Simone Atzori ◽  
Marco Moro ◽  
Cristiano Tolomei ◽  
...  

1980 ◽  
Vol 43 (330) ◽  
pp. 765-770 ◽  
Author(s):  
A. M. Duncan ◽  
R. M. F. Preston

SummaryThe chemical variation of clinopyroxene phenocrysts from the trachybasaltic lavas of Etna volcano is described. The phenocrysts show a limited, but distinct trend in chemical variation from calcic-augite in the hawaiites to augite in the benmoreites. The trend of this variation is unusual, being one of Mg-enrichment with differentiation of the magma. Ca shows a steady decrease in the clinopyroxenes from the hawaiites to the benmoreites. Na, however, shows little chemical variation in the pyroxenes. The trace element chemistry is briefly examined. The clinopyroxenes show well-developed oscillatory and sector zoning. The basal {11} sectors are enriched in Si and Mg and depleted in Ti, Al, and Fe relative to the {100}, {110}, and {010} prism sectors.


2011 ◽  
Vol 54 (5) ◽  
Author(s):  
Annalisa Cappello ◽  
Annamaria Vicari ◽  
Ciro Del Negro

2021 ◽  
Author(s):  
Matteo Albano ◽  
Michele Saroli ◽  
Simone Atzori ◽  
Marco Moro ◽  
Cristiano Tolomei ◽  
...  

<p>In the last decades, satellite monitoring techniques allowed to discover non-catastrophic slope movements triggered by earthquake shaking and involving deep blind sliding surfaces of old paleo-landslides. Understanding the triggering and attenuation mechanisms of such mass movements is crucial to assess their hazard. On December 2018, the Etna volcano (southern Italy) began a very intense eruption, accompanied by a seismic swarm with magnitudes up to 4.9. Synthetic Aperture Radar data from Sentinel-1 and ALOS-2 identified some local displacements over a hilly area to the southwest of the Etna volcano, near Paternò village. We evaluated the contribution of seismically-induced surface instabilities to the observed ground displacement by employing a multidisciplinary analysis comprising geological, geotechnical and geomorphological data, together with analytical and dynamic modelling. The results of our study allowed us to identify the geometry and kinematics of a previously unknown paleo-landslide. A pseudostatic, limit-equilibrium back-analysis of the landslide mass highlighted that the displacements detected by InSAR data were caused by the undrained seismic instability of the landslide mass, which was dormant before the volcanic eruption, under the light-to-moderate seismic shacking of the December 26, Mw 4.9 earthquake. Such a new observation allowed to identify the geometry and kinematics of a previously unknown landslide mass and confirms that earthquakes have a cumulative effect on landslides that doesn't necessarily manifest as a failure but could evolve in a catastrophic collapse after several earthquakes. Such an aspect must be adequately investigated to identify unknown quiescent landslide bodies and to prevent the effects of their potential collapse during an earthquake.</p>


2021 ◽  
Author(s):  
Daniele Carbone ◽  
Laura Antoni-Micollier ◽  
Filippo Greco ◽  
Jean Lautier-Gaud ◽  
Danilo Contrafatto ◽  
...  

<p>The NEWTON-g project [1] proposes a paradigm shift in terrain gravimetry to overcome the limitations imposed by currently available instrumentation. The project targets the development of an innovative gravity imager and the field-test of the new instrumentation through the deployment at Mount Etna volcano (Italy). The gravity imager consists in an array of MEMS-based relative gravimeters anchored on an Absolute Quantum Gravimeter [2].<br>The Absolute Quantum Gravimeter (AQG) is an industry-grade gravimeter measuring g with laser-cooled atoms [3]. Within the NEWTON-g project, an enhanced version of the AQG (AQGB03) has been developed, which is able to produce high-quality data against strong volcanic tremor at the installation site.<br>After reviewing the key principles of the AQG, we present the deployment of the AQGB03 at the Pizzi Deneri (PDN) Volcanological Observatory (North flank of Mt. Etna; 2800 m elevation; 2.5 km from the summit active craters), which was completed in summer 2020. We then show the demonstrated measurement performances of the AQG, in terms of sensitivity and stability. In particular, we report on a reproducible sensitivity to gravity at a level of 1 μGal, even during intense volcanic activity.<br>We also discuss how the time series acquired by AQGB03 at PDN compares with measurements from superconducting gravimeters already installed at Mount Etna. In particular, the significant  correlation with gravity data collected at sites 5 to 9 km away from PDN proves that effects due to bulk mass sources, likely related to volcanic processes, are predominant over possible local and/or instrumental artifacts.<br>This work demonstrates the feasibility to operate a free-falling quantum gravimeter in the field, both as a transportable turn-key device and as a drift-free monitoring device, able to provide high-quality continuous measurements under harsh environmental conditions. It paves the way to a wider use of absolute gravimetry for geophysical monitoring.</p><p>[1] www.newton-g.com</p><p>[2] D. Carbone et al., “The NEWTON-g Gravity Imager: Toward New Paradigms for Terrain Gravimetry”, Front. Earth Sci. 8:573396 (2020)</p><p>[3] V. Ménoret et al., "Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter", Nature Scientific Reports, vol. 8, 12300 (2018)</p>


2010 ◽  
Vol 278 (1-2) ◽  
pp. 92-104 ◽  
Author(s):  
M. Liotta ◽  
A. Paonita ◽  
A. Caracausi ◽  
M. Martelli ◽  
A. Rizzo ◽  
...  

Tectonics ◽  
2020 ◽  
Vol 39 (9) ◽  
Author(s):  
G. Barreca ◽  
S. Branca ◽  
R. A. Corsaro ◽  
L. Scarfì ◽  
F. Cannavò ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document