superconducting gravimeters
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 24)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Simon D. Carrière ◽  
Bertille Loiseau ◽  
Cédric Champollion ◽  
Chloé Ollivier ◽  
Nicolas K. Martin‐StPaul ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-46
Author(s):  
Min Zhang ◽  
Ziwei Liu ◽  
Qiong Wu ◽  
Yuntian Teng ◽  
Xiaotong Zhang ◽  
...  

Inter-seasonal and geodynamics-related gravity changes are important geoscientific signals that are extractable from gravimeter observations after deducing background information as local hydrology gravity effect. With two superconducting gravimeters (SGs, OSG-053 and iGrav-007) located in different tectonic units, continuous Global Navigation Satellite System data, and AG observations, Wuhan (China) is an ideal location for investigating the effects of gravity resulting from significant local hydrology mass variations. We processed ∼26 months of gravity data collected from the SGs in Wuhan and obtain residuals of -40 nm.s2 for OSG-053 and 100 for iGrav-007. The hydrological observations show an estimated gravity increase of 42 nm.s2 near iGrav-007, which mainly resulted from the increased unconfined water level with an aquifer-specific yield of approximately 0.1. However, the gravity changes around OSG-053 are mainly from soil moisture and reach -90 nm.s2. The soil type, thickness and water content parameters were obtained from hydrogeological survey and drilling data. The deep confined water level rose by 2.5 m, which introduced a 1 nm.s2 gravity variation with a specific storage about 0.00001 from field unsteady flow pumping test. The modeled gravity is approximately -40 nm.s2 around OSG-053 and 90 around iGrav-007, in accordance with the observed gravity variations. The difference in gravity changes between the two SG observations can be explained by different local water storage environments. Our results suggest that unconfined and soil water significantly impact the in-situ gravimetry, which indicates that further detailed hydrogeological surveys are required. A combined investigation of gravity and water levels can be a useful approach to monitor aquifer storage conditions and groundwater management.


Author(s):  
Zili Zhang ◽  
Xing Huang ◽  
Chunyan Cui ◽  
Hao Wang ◽  
Feifei Niu ◽  
...  

Abstract This paper presents a novel Nb superconducting joint with an ultralow resistance of 7.9 × 10-16 Ω, fabricated using the electron beam welding (EBW) method. After the EBW process, the two Nb filaments formed a single joint with a much larger grain size and smaller grain misorientation. More importantly, the resistance of the EBW Nb joint was nearly one magnitude lower than that of most conventional pressing joint. The ultralow resistance is essential for superconducting gravimeters, which require an extremely low drift rate. The EBW Nb joint allowed the superconducting gravimeter to have a much better performance when applied in the field of structural geology, geodesy, microgravity, and metrology. We believe that the EBW method could be one of the most promising joint fabrication methods for achieving maximum stability (less than 1 μgal/yr).


2021 ◽  
Author(s):  
Daniele Carbone ◽  
Laura Antoni-Micollier ◽  
Filippo Greco ◽  
Jean Lautier-Gaud ◽  
Danilo Contrafatto ◽  
...  

<p>The NEWTON-g project [1] proposes a paradigm shift in terrain gravimetry to overcome the limitations imposed by currently available instrumentation. The project targets the development of an innovative gravity imager and the field-test of the new instrumentation through the deployment at Mount Etna volcano (Italy). The gravity imager consists in an array of MEMS-based relative gravimeters anchored on an Absolute Quantum Gravimeter [2].<br>The Absolute Quantum Gravimeter (AQG) is an industry-grade gravimeter measuring g with laser-cooled atoms [3]. Within the NEWTON-g project, an enhanced version of the AQG (AQGB03) has been developed, which is able to produce high-quality data against strong volcanic tremor at the installation site.<br>After reviewing the key principles of the AQG, we present the deployment of the AQGB03 at the Pizzi Deneri (PDN) Volcanological Observatory (North flank of Mt. Etna; 2800 m elevation; 2.5 km from the summit active craters), which was completed in summer 2020. We then show the demonstrated measurement performances of the AQG, in terms of sensitivity and stability. In particular, we report on a reproducible sensitivity to gravity at a level of 1 μGal, even during intense volcanic activity.<br>We also discuss how the time series acquired by AQGB03 at PDN compares with measurements from superconducting gravimeters already installed at Mount Etna. In particular, the significant  correlation with gravity data collected at sites 5 to 9 km away from PDN proves that effects due to bulk mass sources, likely related to volcanic processes, are predominant over possible local and/or instrumental artifacts.<br>This work demonstrates the feasibility to operate a free-falling quantum gravimeter in the field, both as a transportable turn-key device and as a drift-free monitoring device, able to provide high-quality continuous measurements under harsh environmental conditions. It paves the way to a wider use of absolute gravimetry for geophysical monitoring.</p><p>[1] www.newton-g.com</p><p>[2] D. Carbone et al., “The NEWTON-g Gravity Imager: Toward New Paradigms for Terrain Gravimetry”, Front. Earth Sci. 8:573396 (2020)</p><p>[3] V. Ménoret et al., "Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter", Nature Scientific Reports, vol. 8, 12300 (2018)</p>


2021 ◽  
Author(s):  
Ezequiel D. Antokoletz ◽  
Hartmut Wziontek ◽  
Henryk Dobslaw ◽  
Claudia N. Tocho

<p>In modelling of atmospheric loading effects in terrestrial gravimetry by numerical weather models, often the Inverse Barometer (IB) hypothesis is applied over oceans. This simple assumption implies an isostatic compensation of the oceans to atmospheric pressure changes, causing no net deformation of the seafloor. However, the IB hypothesis is in general not valid for periods shorter than a few weeks and, consequently, the ocean dynamics cannot be neglected. In particular, for the correction of high precision gravity time series as e.g. obtained from superconducting gravimeters, it is essential to model even small contributions in order to separate different effects. When including non-tidal ocean loading effects from ocean circulation models into atmospheric models, special care has to be taken of the interface between the atmosphere and the oceans in order not to account contributions twice.</p><p>The established approach for modelling non-tidal ocean loading effects is revised in this study. When combining it with the modelling of atmospheric effects for terrestrial gravimetry, it is shown that Newtonian attraction contributions from the atmosphere may be accounted twice. To solve this problem, an alternative is proposed and tested which further reduces the variability of the gravity residuals, as shown for a set of four superconducting gravity meters globally distributed.</p><p>The improvement is achieved by a different treatment of the Newtonian attraction component related to the IB effect. Discrepancies up to the μGal level are demonstrated, depending on the location of the station. With several simplifications, the approach can be made operational and included in existing services, further improving the compatibility of terrestrial gravity time series with satellite gravity observations.</p>


2021 ◽  
Author(s):  
Thomas King ◽  
Daniele Carbone ◽  
Filippo Greco

<p>Continuous gravity measurements at Mt. Etna, Sicily demonstrate spatio-temporal variations that can be related to volcanic processes. Two iGrav superconducting gravimeters (SGs) were installed in 2014 and 2016 at Serra La Nave Astrophysical Observatory (SLN; 1,730 m elevation; ~6.5 km from the summit craters) and La Montagnola hut (MNT; 2,600 m asl; ~3.5 km SE of the summit crater). Since their installation both stations have been continuously recording, resulting in high-resolution (1 Hz sampling rate) time series. The persistent activity of Etna is maintained by a regular supply of magma to the shallower levels of the plumbing system. The bulk mass redistributions induced by the newly injected material result in minor variations in the local gravity field that are recorded by the two stations. By assuming that the observed gravity changes are due exclusively to mass changes in an almost spherical-shaped source, located beneath the craters, the amplitude ratio between the two signals can be used to estimate the depth to potential mass changes beneath the surface.</p><p>This study reports on the time-dependent nature of mass changes located beneath the craters of the volcano during 2019. Results highlight distinct periods of stability at different depths, as well as potential periods of transitory activity, where the predominant mass source switches between storage zones at different depth. These events are correlated to phases of strombolian and effusive activity, highlighting the potential of continuous gravimetry for the detection of eruption precursors.</p>


2021 ◽  
Author(s):  
Sébastien Merlet ◽  
Pierre Gillot ◽  
Bing Cheng ◽  
Romain Karcher ◽  
Almazbek Imanaliev ◽  
...  

<p>Atom gravimeters based on atom interferometry offer new measurement capabilities, by combining high sensitivities and accuracies at the best level of a few tens of nm.s<sup>−2</sup> with the possibility to perform continuous measurements. Being absolute meters, their scale factor is accurately determined and do not need calibration. Because of their high sensitivity and low drift, superconducting gravimeters are the key instruments for the continuous monitoring of gravity variations. Nevertheless, being relative meters, they need to be calibrated.</p><p>We revisit a 2015 one month long common view measurement of an absolute cold atom gravimeter (CAG) and a relative iGrav superconducting gravimeter, which we use to investigate the CAG long term stability and calibrate the iGrav scale factor. The initial measurement has already been presented at EGU 2016. Here finalized, we present how it allowed us to push the CAG long-term stability down to the level of 0.5 nm.s<sup>−2</sup>. We investigate the impact of the duration of the measurement on the uncertainty in the determination of the correlation factor and show that it is limited to about 3‰ by the coloured noise of our cold atom gravimeter. A 3-days long measurement session with an additional FG5X absolute gravimeter allows us to directly compare the calibration results obtained with two different absolute meters. Based on our analysis, we expect that with an improvement of its long term stability, the CAG will allow to calibrate the iGrav scale factor to better than the per mille level (1σ level of confidence) after only one-day of concurrent measurements during maximum tidal amplitudes.</p>


2020 ◽  
Vol 224 (1) ◽  
pp. 533-542
Author(s):  
Tomofumi Shimoda ◽  
Kévin Juhel ◽  
Jean-Paul Ampuero ◽  
Jean-Paul Montagner ◽  
Matteo Barsuglia

SUMMARY Since gravity changes propagate at the speed of light, gravity perturbations induced by earthquake deformation have the potential to enable faster alerts than the current earthquake early warning systems based on seismic waves. Additionally, for large earthquakes (Mw > 8), gravity signals may allow for a more reliable magnitude estimation than seismic-based methods. Prompt elastogravity signals induced by earthquakes of magnitude larger than 7.9 have been previously detected with seismic arrays and superconducting gravimeters. For smaller earthquakes, down to Mw ≃ 7, it has been proposed that detection should be based on measurements of the gradient of the gravitational field, in order to mitigate seismic vibration noise and to avoid the cancelling effect of the ground motions induced by gravity signals. Here we simulate the five independent components of the gravity gradient signals induced by earthquakes of different focal mechanisms. We study their spatial amplitude distribution to determine what kind of detectors is preferred (which components of the gravity gradient are more informative), how detectors should be arranged and how earthquake source parameters can be estimated. The results show that early earthquake detections, within 10 s of the rupture onset, using only the horizontal gravity strain components are achievable up to about 140 km distance from the epicentre. Depending on the earthquake focal mechanism and on the detector location, additional measurement of the vertical gravity strain components can enhance the detectable range by 10–20 km. These results are essential for the design of gravity-based earthquake early warning systems.


Sign in / Sign up

Export Citation Format

Share Document