absolute gravimetry
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Kazuhiro Naganawa ◽  
Takahito Kazama ◽  
Yoichi Fukuda ◽  
Satoshi Miura ◽  
Hideki Hayakawa ◽  
...  

Abstract In Southeast Alaska (SE-AK), rapid ground uplift of up to 3 cm/yr has been observed associated with post-Little Ice Age glacial isostatic adjustment (GIA). Geodetic techniques such as global navigation satellite system (GNSS) and absolute gravimetry have been applied to monitor GIA since the last 1990s. Rheological parameters for SE-AK were determined from dense GNSS array data in earlier studies. However, the absolute gravity rate of change observed in SE-AK was inconsistent with the ground uplift rate, mainly because few gravity measurements from 2006 to 2008 resulted in imprecise gravity variation rates. Therefore, we collected absolute gravity data at six gravity points in SE-AK every June in 2012, 2013, and 2015, and updated the gravity variation rate by reprocessing the absolute gravity data collected from 2006 to 2015. We found that the updated gravity variation rate at the six gravity points ranged from −2.05 to −4.40 μGal/yr, and its standard deviation was smaller than that reported in the earlier study by up to 88 %. We also estimated the rheological parameters to explain the updated gravity variation rate, and their optimal values were determined to be 55 km and 1.2 × 10^19 Pa s for lithospheric thickness and upper mantle viscosity, respectively. These optimal values are consistent with those independently obtained from GNSS observations, and this fact indicates that absolute gravimetry can be one of the most effective methods in determining sub-surface structural parameters associated with GIA accurately. Moreover, we utilized the gravity variation rates for estimating the ratio of gravity variation to vertical ground deformation at the six gravity points in SE-AK. The viscous ratio values were obtained as −0.168 and −0.171 μGal/mm from the observed data and the calculated result, respectively. These ratios are greater (in absolute) than those for other GIA regions (−0.15 to −0.16 μGal/mm in Antarctica and Fennoscandia) because glaciers in SE-AK have melted more recently than in other regions.


2021 ◽  
Author(s):  
Daniele Carbone ◽  
Laura Antoni-Micollier ◽  
Filippo Greco ◽  
Jean Lautier-Gaud ◽  
Danilo Contrafatto ◽  
...  

<p>The NEWTON-g project [1] proposes a paradigm shift in terrain gravimetry to overcome the limitations imposed by currently available instrumentation. The project targets the development of an innovative gravity imager and the field-test of the new instrumentation through the deployment at Mount Etna volcano (Italy). The gravity imager consists in an array of MEMS-based relative gravimeters anchored on an Absolute Quantum Gravimeter [2].<br>The Absolute Quantum Gravimeter (AQG) is an industry-grade gravimeter measuring g with laser-cooled atoms [3]. Within the NEWTON-g project, an enhanced version of the AQG (AQGB03) has been developed, which is able to produce high-quality data against strong volcanic tremor at the installation site.<br>After reviewing the key principles of the AQG, we present the deployment of the AQGB03 at the Pizzi Deneri (PDN) Volcanological Observatory (North flank of Mt. Etna; 2800 m elevation; 2.5 km from the summit active craters), which was completed in summer 2020. We then show the demonstrated measurement performances of the AQG, in terms of sensitivity and stability. In particular, we report on a reproducible sensitivity to gravity at a level of 1 μGal, even during intense volcanic activity.<br>We also discuss how the time series acquired by AQGB03 at PDN compares with measurements from superconducting gravimeters already installed at Mount Etna. In particular, the significant  correlation with gravity data collected at sites 5 to 9 km away from PDN proves that effects due to bulk mass sources, likely related to volcanic processes, are predominant over possible local and/or instrumental artifacts.<br>This work demonstrates the feasibility to operate a free-falling quantum gravimeter in the field, both as a transportable turn-key device and as a drift-free monitoring device, able to provide high-quality continuous measurements under harsh environmental conditions. It paves the way to a wider use of absolute gravimetry for geophysical monitoring.</p><p>[1] www.newton-g.com</p><p>[2] D. Carbone et al., “The NEWTON-g Gravity Imager: Toward New Paradigms for Terrain Gravimetry”, Front. Earth Sci. 8:573396 (2020)</p><p>[3] V. Ménoret et al., "Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter", Nature Scientific Reports, vol. 8, 12300 (2018)</p>


2021 ◽  
Author(s):  
Dorothee Tell ◽  
Étienne Wodey ◽  
Christian Meiners ◽  
Klaus H. Zipfel ◽  
Manuel Schilling ◽  
...  

<p>In terrestrial geodesy, absolute gravimetry is a tool to observe geophysical processes over extended timescales. This requires measurement devices of high sensitivity and stability. Atom interferometers connect the free fall motion of atomic ensembles to absolute frequency measurements and thus feature very high long-term stability. By extending their vertical baseline to several meters, we introduce Very Long Baseline Interferometry (VLBAI) as a gravity reference of higher-order accuracy.</p><p>By using state-of-the-art vibration isolation, sensor fusion and well controlled atomic sources and environments on a 10 m baseline, we aim for an intrinsic sensitivity σ<sub>g</sub> ≤ 5 nm/s² in a first scenario for our Hannover VLBAI facility. At this level, the effects of gravity gradients and curvature along the free fall region need to be taken into account. We present gravity measurements along the baseline, in agreement with simulations using an advanced model of the building and surroundings [1]. Using this knowledge, we perform a perturbation theory approach to calculate the resulting contribution to the atomic gravimeter uncertainty, as well as the effective instrumental height of the device depending on the interferometry scheme [2]. Based on these results, we will be able to compare gravity values with nearby absolute gravimeters and as a first step verify the performance of the VLBAI gravimeter at a level comparable to classical devices.</p><p>The Hannover VLBAI facility is a major research equipment funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). This work was supported by the DFG Collaborative Research Center 1464 “TerraQ” (Project A02) and is supported by the CRC 1227 “DQ-mat” (Project B07), Germany’s Excellence Strategy EXC-2123 “QuantumFrontiers”, and the computing cluster of the Leibniz University Hannover under patronage of the Lower Saxony Ministry of Science and Culture (MWK) and the DFG. We acknowledge support from “Niedersächsisches Vorab” through the “Quantum- and Nano-Metrology (QUANOMET)” initiative (Project QT3), and for initial funding of research in the DLR-SI institute, as well as funding from the German Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany.</p><p>[1] Schilling et al. “Gravity field modelling for the Hannover 10 m atom interferometer”.  Journal of Geodesy 94, 122 (2020)</p><p>[2] Ufrecht, Giese,  “Perturbative operator approach to high-precision light-pulse atom interferometry”. Physical Review A 101, 053615 (2020).</p>


2021 ◽  
Vol 70 ◽  
pp. 1-10
Author(s):  
Meiying Guo ◽  
Kang Wu ◽  
Jiamin Yao ◽  
Yi Wen ◽  
Lijun Wang
Keyword(s):  

2020 ◽  
Vol 94 (12) ◽  
Author(s):  
Manuel Schilling ◽  
Étienne Wodey ◽  
Ludger Timmen ◽  
Dorothee Tell ◽  
Klaus H. Zipfel ◽  
...  

AbstractAbsolute gravimeters are used in geodesy, geophysics and physics for a wide spectrum of applications. Stable gravimetric measurements over timescales from several days to decades are required to provide relevant insight into geophysical processes. Users of absolute gravimeters participate in comparisons with a metrological reference in order to monitor the temporal stability of the instruments and determine the bias to that reference. However, since no measurement standard of higher-order accuracy currently exists, users of absolute gravimeters participate in key comparisons led by the International Committee for Weights and Measures. These comparisons provide the reference values of highest accuracy compared to the calibration against a single gravimeter operated at a metrological institute. The construction of stationary, large-scale atom interferometers paves the way for a new measurement standard in absolute gravimetry used as a reference with a potential stability up to $$1\,\hbox {nm}{/}{\hbox {s}^{2}}$$ 1 nm / s 2 at 1 s integration time. At the Leibniz University Hannover, we are currently building such a very long baseline atom interferometer with a 10-m-long interaction zone. The knowledge of local gravity and its gradient along and around the baseline is required to establish the instrument’s uncertainty budget and enable transfers of gravimetric measurements to nearby devices for comparison and calibration purposes. We therefore established a control network for relative gravimeters and repeatedly measured its connections during the construction of the atom interferometer. We additionally developed a 3D model of the host building to investigate the self-attraction effect and studied the impact of mass changes due to groundwater hydrology on the gravity field around the reference instrument. The gravitational effect from the building 3D model is in excellent agreement with the latest gravimetric measurement campaign which opens the possibility to transfer gravity values with an uncertainty below the $${10}\,\hbox {nm}{/}{\hbox {s}^{2}}$$ 10 nm / s 2 level.


2020 ◽  
Vol 55 (3) ◽  
pp. 100-117
Author(s):  
Viktor Szabó ◽  
Dorota Marjańska

AbstractGlobal satellite gravity measurements provide unique information regarding gravity field distribution and its variability on the Earth. The main cause of gravity changes is the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology, glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE seems to be the most dominating source of gravity data, sharing a unique set of observations from over 15 years. The results of this experiment are often of interest to geodesists and geophysicists due to its high compatibility with the other methods of gravity measurements, especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can provide conclusions concerning forecasts of subsurface water changes. The aim of this work is to present the issue of selection of filtration parameters for monthly gravity field solutions in RL06 and RL05 releases and then to compare them to a time series of absolute gravimetric data conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Józefosław (Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal solutions in comparison with absolute terrestrial gravimetry data and making an attempt to indicate the significance of differences between solutions using various types of filtration (DDK, Gaussian) from selected research centres.


2020 ◽  
Vol 56 (9) ◽  
Author(s):  
Kuan‐Hung Chen ◽  
Cheinway Hwang ◽  
Liang‐Cheng Chang ◽  
Jui‐Pin Tsai ◽  
Tian‐Chyi Jim Yeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document