Gas-phase naphthalene concentration data recovery in ambient air and its relevance as a tracer of sources of volatile organic compounds

2016 ◽  
Vol 131 ◽  
pp. 279-288 ◽  
Author(s):  
Iratxe Uria-Tellaetxe ◽  
Marino Navazo ◽  
Maite de Blas ◽  
Nieves Durana ◽  
Lucio Alonso ◽  
...  
2021 ◽  
Vol 21 (4) ◽  
pp. 2407-2426 ◽  
Author(s):  
Gareth J. Stewart ◽  
Beth S. Nelson ◽  
W. Joe F. Acton ◽  
Adam R. Vaughan ◽  
Naomi J. Farren ◽  
...  

Abstract. Biomass burning emits significant quantities of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) in a complex mixture, probably containing many thousands of chemical species. These components are significantly more toxic and have poorly understood chemistry compared to volatile organic compounds routinely quantified in ambient air; however, analysis of I/SVOCs presents a difficult analytical challenge. The gases and particles emitted during the test combustion of a range of domestic solid fuels collected from across Delhi were sampled and analysed. Organic aerosol was collected onto Teflon (PTFE) filters, and residual low-volatility gases were adsorbed to the surface of solid-phase extraction (SPE) discs. A new method relying on accelerated solvent extraction (ASE) coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC–ToF-MS) was developed. This highly sensitive and powerful analytical technique enabled over 3000 peaks from I/SVOC species with unique mass spectra to be detected. A total of 15 %–100 % of gas-phase emissions and 7 %–100 % of particle-phase emissions were characterised. The method was analysed for suitability to make quantitative measurements of I/SVOCs using SPE discs. Analysis of SPE discs indicated phenolic and furanic compounds were important for gas-phase I/SVOC emissions and levoglucosan to the aerosol phase. Gas- and particle-phase emission factors for 21 polycyclic aromatic hydrocarbons (PAHs) were derived, including 16 compounds listed by the US EPA as priority pollutants. Gas-phase emissions were dominated by smaller PAHs. The new emission factors were measured (mg kg−1) for PAHs from combustion of cow dung cake (615), municipal solid waste (1022), crop residue (747), sawdust (1236), fuelwood (247), charcoal (151) and liquefied petroleum gas (56). The results of this study indicate that cow dung cake and municipal solid waste burning are likely to be significant PAH sources, and further study is required to quantify their impact alongside emissions from fuelwood burning.


2008 ◽  
Vol 42 (34) ◽  
pp. 7844-7850 ◽  
Author(s):  
Aikaterini K. Boulamanti ◽  
Christos A. Korologos ◽  
Constantine J. Philippopoulos

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1592
Author(s):  
Olga P. Ibragimova ◽  
Anara Omarova ◽  
Bauyrzhan Bukenov ◽  
Aray Zhakupbekova ◽  
Nassiba Baimatova

Air pollution is one of the primary sources of risk to human health in the world. In this study, seasonal and spatial variations of multiple volatile organic compounds (VOCs) were measured at six sampling sites in Almaty, Kazakhstan. The seasonal and spatial variations of 19 VOCs were evaluated in 2020, including the periods before and after COVID-19 lockdown. The concentrations of 9 out of 19 VOCs had been changed significantly (p < 0.01) during 2020. The maximum concentrations of total VOCs (TVOCs) were observed on 15, 17, and 19 January and ranged from 233 to 420 µg m−3. The spatial distribution of TVOCs concentrations in the air during sampling seasons correlated with the elevation and increased from southern to northern part of Almaty, where Combined Heat and Power Plants are located. The sources of air pollution by VOCs were studied by correlations analysis and BTEX ratios. The ranges of toluene to benzene ratio and benzene, toluene, and ethylbenzene demonstrated two primary sources of BTEX in 2020: traffic emissions and biomass/biofuel/coal burning. Most of m-, p-xylenes to ethylbenzene ratios in this study were lower than 3 in all sampling periods, evidencing the presence of aged air masses at studied sampling sites from remote sources.


The Analyst ◽  
2010 ◽  
Vol 135 (2) ◽  
pp. 306 ◽  
Author(s):  
Leonard A. Dillon ◽  
Victoria N. Stone ◽  
Laura A. Croasdell ◽  
Peter R. Fielden ◽  
Nicholas J. Goddard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document