Central parasympathetic excitation in real-time during intra-operative stretch stimulation of the carotid sinus intima in anaesthetised human subjects

2015 ◽  
Vol 192 ◽  
pp. 85
Author(s):  
M.N. Bence ◽  
D. Sigaudo-Roussel ◽  
P.O.O. Julu ◽  
M.E. Gaunt
2011 ◽  
Vol 7 (2) ◽  
pp. 89 ◽  
Author(s):  
Maria Teresa La Rovere ◽  
Roberto Maestri ◽  
Gian Domenico Pinna ◽  
◽  
◽  
...  

The baroreflex mechanism has been recognised as a key part of cardiovascular regulation. Alterations in the baroreceptor-heart rate reflex (baroreflex sensitivity [BRS]) contribute to sympathetic–parasympathetic imbalance, playing a major role in the development and progression of many cardiovascular disorders. Therefore, the measurement of the baroreflex is a source of valuable information in the clinical management of cardiac disease patients. This article reviews the most relevant advances for the measurement of BRS and their clinical and prognostic implications. Novel therapeutic strategies, exploring the use of electrical stimulation of the carotid sinus, have been evaluated recently in experimental and preliminary clinical studies to lower blood pressure and to reduce the level of baroreflex-mediated sympathoexcitation in heart failure. A recent study has also shown that the implementation of an artificial baroreflex system to regulate sympathetic vasomotor tone automatically is feasible.


2020 ◽  
Vol 43 (10) ◽  
pp. 1057-1067 ◽  
Author(s):  
Gean Domingos-Souza ◽  
Fernanda Machado Santos-Almeida ◽  
César Arruda Meschiari ◽  
Nathanne S. Ferreira ◽  
Camila A. Pereira ◽  
...  

1964 ◽  
Vol 207 (2) ◽  
pp. 303-307 ◽  
Author(s):  
B. J. Prout ◽  
J. H. Coote ◽  
C. B. B. Downman

In cats anesthetized with chloralose-urethane mixture, stimulation of an afferent nerve evoked a vasoconstrictor reflex (VCR) and a galvanic skin response (GSR) in the pads of the feet. Stimulation of the ventromedial medullary reticular substance at the level of the obex abolished the VCR and the GSR. VCR could also be reduced by occlusion during prolonged stimulation of another spinal or visceral afferent pathway. Medulla stimulation was effective without itself causing a sympathetic discharge to the paw, showing that inhibition rather than occlusion was operative. Anterior cerebellar stimulation also inhibited the VCR. Carotid sinus nerve stimulation did not abolish the VCR. It is concluded that the effective mechanism includes a bulbospinal inhibitory path projecting on a spinal vasoconstrictor reflex arc. This arrangement is similar to the descending pathways inhibiting other spinal reflexes but the VCR-inhibitory path can be activated independently of them.


2019 ◽  
Author(s):  
Sebastiano Bariselli ◽  
Nanami Miyazaki ◽  
Alexxai Kravitz

AbstractStimulants are one of the most widely prescribed classes of pharmaceuticals, but it is unclear which brain pathways underlie their therapeutic and adverse actions. Here, with real-time monitoring of circuit plasticity, we demonstrate that psychostimulants strengthen orbitofrontal (OFC) to dorsomedial striatum (DMS) pathway synapses, and increase striatal output in awake mice. In vivo high-frequency stimulation of OFC-DMS pathway blocked stimulant-induced potentiation and the expression of locomotor sensitization, thereby directly linking OFC-DMS plasticity to hyperactivity.


2018 ◽  
Vol 112 ◽  
pp. 149-155 ◽  
Author(s):  
Ning Zhang ◽  
Flurin Stauffer ◽  
Benjamin R. Simona ◽  
Feng Zhang ◽  
Zhao-Ming Zhang ◽  
...  

2020 ◽  
Author(s):  
Brian Seabrook ◽  
Ahmed Kiyoumi ◽  
Rajes Sau ◽  
Alaa Othman ◽  
Laila Almarzooqi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document