Prediction of membrane protein types by fusing protein-protein interaction and protein sequence information

2020 ◽  
Vol 1868 (12) ◽  
pp. 140524
Author(s):  
Xiaolin Zhang ◽  
Lei Chen
2021 ◽  
Author(s):  
Lei Deng ◽  
Wenjuan Nie ◽  
Jiaojiao Zhao ◽  
Jingpu Zhang

Abstract Background: Viral infection and diseases are caused by various viruses involved in the protein-protein interaction (PPI) between virus and host, which are a threat to human health. Studying the virus-host PPI is beneficial to apprehending the mechanism of viral infection and developing new treatment drugs. Although several computational methods for predicting the virus-host PPI have been proposed, most of them are supported by the machine learning algorithms, making the hidden high-level feature difficult to be extracted. Results: We proposed a novel hybrid deep learning framework combined with four CNN layers and LSTM to predict the virus-host PPI only using protein sequence information. CNN can extract the nonlinear position-related features of protein sequence, and LSTM can obtain the long-term relevant information. L1-regularized logistic regression is applied to eliminate the noise and redundant information. Our model achieved the best performance on the benchmark dataset and independent set compared with other existing methods. Conclusion: Our method, through the hybrid deep neural network, is useful for predicting virus-host PPI using protein sequence alone, and achieved the best prediction performance compared with other existing methods, which is promising on the virus-host PPI prediction


2020 ◽  
Vol 26 (02) ◽  
pp. 2177-2184
Author(s):  
M. A. Uddin ◽  
M. S. Ahmed

The prediction of protein-protein interaction sites (PPIs) is a vital importance in biology for understanding the physical and functional interactions between molecules in living systems. There are several classification approaches for the prediction of PPI sites; the naïve Bayes classifier is one of the most popular candidates. But the ordinary naïve Bayes classifier is sensitive to unusual protein sequence profiling feature dataset and sometimes it gives ambiguous prediction results. To overcome this problem we have been modified the naïve Bayes classifier by radial basis function (RBF) kernel for the prediction of PPI sites. We investigate the performance of our proposed method compared with the popular classifiers like linear discriminant analysis (LDA), naïve Bayes classifier (NBC), support vector machine (SVM), AdaBoost and k-nearest neighbor (KNN) by the protein sequence profiling data analysis. The mNBC method showed sensitivity (86%), specificity (81%), accuracy (83%) and MCC (65%) for prediction of PPI sites.


1998 ◽  
Vol 76 (5) ◽  
pp. 735-741 ◽  
Author(s):  
Larry Fliegel ◽  
Rakhilya Murtazina ◽  
Pavel Dibrov ◽  
Carmen Harris ◽  
Andrea Moor ◽  
...  

The Na+/H+ exchanger is a ubiquitous protein present in all mammalian cell types that functions to remove one intracellular H+ for one extracellular Na+. Several isoforms of the protein exist, which are referred to as NHE1 to NHE6 (for Na+/H+ exchanger one through six). The NHE1 protein was the first isoform cloned and studied in a variety of systems. This review summarizes recent papers on this protein, particularly those that have examined regulation of the protein and its expression and activity.Key words: cation translocation, intracellular pH, membrane protein, Na+/H+ antiporter, protein phosphorylation, protein-protein interaction.


Sign in / Sign up

Export Citation Format

Share Document