IL-3 promotes osteoblast differentiation and bone formation in human mesenchymal stem cells

2012 ◽  
Vol 418 (4) ◽  
pp. 669-675 ◽  
Author(s):  
Amruta P. Barhanpurkar ◽  
Navita Gupta ◽  
Rupesh K. Srivastava ◽  
Geetanjali B. Tomar ◽  
Sameer P. Naik ◽  
...  
2018 ◽  
Vol 51 (3) ◽  
pp. 1087-1102 ◽  
Author(s):  
Lijun Duan ◽  
He Zhao ◽  
Yang Xiong ◽  
Xiangsheng Tang ◽  
Yongdong Yang ◽  
...  

Background/Aims: Osteoporosis is a bone metabolic disease characterized by a systemic impairment of bone mass, which results in increased propensity of fragility fractures. A reduction in the differentiation of MSCs into osteoblasts contributes to the impaired bone formation observed in osteoporosis. Mesenchymal stem cells (MSCs) are induced to differentiate into preosteoblasts, which are regulated by the signaling cascades initiated by the various signals, including miRNAs. miR-16-2* is a newly discovered miRNA that participates in diagnosis and prognosis of hepatocellular carcinoma, cervical cancer and chronic lymphocytic leukemia. However, the effect of miR-16-2* on the regulation of osteoblast differentiation and the mechanism responsible are still unclear. Here we discuss the contribution of miR-16-2* to osteoporosis, osteoblast differentiation and mineralization. Methods: The expression pattern of miR-16-2* during osteogenesis or in osteoporosis bone samples was validated by quantitative real-time PCR (qRT-PCR). The human bone marrow mesenchymal stem cells (hBMSCs) were induced to differentiate into osteoblasts by osteogenic induced medium containing dexamethasone, ascorbate-2-phosphat, beta-glycerophosphate and vitamin-D3. The target genes of miR-16-2* were predicted by TargetScan and PicTar. The mRNA and protein levels of osteogenic key markers were detected using qRT-PCR or western blot respectively. The WNT signal activity was analyzed by TOP/FOP reporter assay. Results: The expression of miR-16-2* in patient bone tissue with osteoporosis was negatively correlated with bone formation related genes. During osteoblast differentiation process, the expression of miR-16-2* was significantly decreased. Upregulation of miR-16-2* in hBMSCs impaired the osteogenic differentiation while the downregulation of miR-16-2* increased this process. Upregulation the expression of miR-16-2* could also block the WNT signal pathway by directly target WNT5A. Furthermore, knockdown of miR-16-2* could promote the activation of RUNX2, possibly by lifting the inhibitory effect of miR-16-2* on WNT pathway. Conclusion: Taken together, we report a novel biological role of miR-16-2* in osteogenesis through regulating WNT5A response for the first time. Our data support the potential utilization of miRNA-based therapies in regenerative medicine.


2009 ◽  
Vol 185 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Guizhong Liu ◽  
Sapna Vijayakumar ◽  
Luca Grumolato ◽  
Randy Arroyave ◽  
HuiFang Qiao ◽  
...  

Genetic evidence indicates that Wnt signaling is critically involved in bone homeostasis. In this study, we investigated the functions of canonical Wnts on differentiation of adult multipotent human mesenchymal stem cells (hMSCs) in vitro and in vivo. We observe differential sensitivities of hMSCs to Wnt inhibition of osteogenesis versus adipogenesis, which favors osteoblastic commitment under binary in vitro differentiation conditions. Wnt inhibition of osteogenesis is associated with decreased expression of osteoblastic transcription factors and inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation, which are involved in osteogenic differentiation. An hMSC subpopulation exhibits high endogenous Wnt signaling, the inhibition of which enhances osteogenic and adipogenic differentiation in vitro. In an in vivo bone formation model, high levels of Wnt signaling inhibit de novo bone formation by hMSCs. However, hMSCs with exogenous expression of Wnt1 but not stabilized β-catenin markedly stimulate bone formation by naive hMSCs, arguing for an important role of a canonical Wnt gradient in hMSC osteogenesis in vivo.


2007 ◽  
Vol 71 (3) ◽  
pp. 201-209 ◽  
Author(s):  
S. Disthabanchong ◽  
P. Radinahamed ◽  
W. Stitchantrakul ◽  
S. Hongeng ◽  
R. Rajatanavin

Stem Cells ◽  
2009 ◽  
Vol 27 (3) ◽  
pp. 703-713 ◽  
Author(s):  
Magali Plaisant ◽  
Coralie Fontaine ◽  
Wendy Cousin ◽  
Nathalie Rochet ◽  
Christian Dani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document