ectopic bone formation
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 5)

H-INDEX

45
(FIVE YEARS 0)

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Luis Fernandez de Castro ◽  
Brian J. Sworder ◽  
Byron Mui ◽  
Kathryn Futrega ◽  
Agnes Berendsen ◽  
...  

AbstractIn a previous transcriptomic study of human bone marrow stromal cells (BMSCs, also known as bone marrow-derived “mesenchymal stem cells”), SFRP2 was highly over-represented in a subset of multipotent BMSCs (skeletal stem cells, SSCs), which recreate a bone/marrow organ in an in vivo ectopic bone formation assay. SFRPs modulate WNT signaling, which is essential to maintain skeletal homeostasis, but the specific role of SFRP2 in BMSCs/SSCs is unclear. Here, we evaluated Sfrp2 deficiency on BMSC/SSC function in models of skeletal organogenesis and regeneration. The skeleton of Sfrp2-deficient (KO) mice is overtly normal; but their BMSCs/SSCs exhibit reduced colony-forming efficiency, reflecting low SSC self-renewal/abundancy. Sfrp2 KO BMSCs/SSCs formed less trabecular bone than those from WT littermates in the ectopic bone formation assay. Moreover, regeneration of a cortical drilled hole defect was dramatically impaired in Sfrp2 KO mice. Sfrp2-deficient BMSCs/SSCs exhibited poor in vitro osteogenic differentiation as measured by Runx2 and Osterix expression and calcium accumulation. Interestingly, activation of the Wnt co-receptor, Lrp6, and expression of Wnt target genes, Axin2, C-myc and Cyclin D1, were reduced in Sfrp2-deficient BMSCs/SSCs. Addition of recombinant Sfrp2 restored most of these activities, suggesting that Sfrp2 acts as a Wnt agonist. We demonstrate that Sfrp2 plays a role in self-renewal of SSCs and in the recruitment and differentiation of adult SSCs during bone healing. SFRP2 is also a useful marker of BMSC/SSC multipotency, and a factor to potentially improve the quality of ex vivo expanded BMSC/SSC products.



Surgeries ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 384-390
Author(s):  
Kirsten Wong ◽  
Edward Damrose ◽  
Jennifer Long

We report two cases of ectopic bone formation in the head and neck following treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). Surgical pathologic data, laryngoscopy imaging, CT imaging, and patient medical history were obtained. First, we report osseous metaplasia in the vocal fold in a 67-year-old male following mandibular dental implants with rhBMP-2; second, a case of severe bony overgrowth of the larynx and fusion to the anterior cervical spine (ACS) in a 73-year-old male following multiple anterior cervical discectomies and fusions with rhBMP-2. Ectopic bone formation following rhBMP-2 has been previously reported. Adverse events like local swelling and edema leading to dysphagia and even airway obstruction after cervical spine application of rhBMP-2 have also been widely reported. Due to the uncommon nature of abnormal bony growth in soft tissue areas of the head and neck and the previously documented adverse effects of rhBMP-2 use, especially in the cervical spine, we consider the two unusual case presentations of ectopic bony formation highly likely to be linked with rhBMP-2. We urge awareness of the adverse effects caused by rhBMP-2, and urge caution in dosing.



Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1195
Author(s):  
Henri J. J. Uijlenbroek ◽  
Xingnan Lin ◽  
Xin Zhang ◽  
Liquan Deng ◽  
Daniel Wismeijer ◽  
...  

In order to evaluate loading methods and the dose dependency of bone morphogenetic protein 2 (BMP-2) in ectopic bone formation, an osteoinductive material consisting of commercially available coralline hydroxyapatite (CHA) was coated with a layer of biomimetic calcium phosphate (BioCaP) containing BMP-2 in different ways. Eight groups—each containing samples of 0.25 g CHA—were formed and coated with, respectively, BioCaP with internally incorporated BMP-2 in concentrations of 1, 5, 10, 20, 40 and 60 µg per sample, and the two control groups with BioCaP only and BioCaP with 20 µg of adsorbed BMP-2 per sample. The samples were implanted subcutaneously in 27 male Wistar rats. The histological results show that there is no bone formation in the group in which no BMP-2 was included. All samples with BioCaP containing BMP-2 show bone formation. The group with 20 µg of adsorbed BMP-2 per sample shows the least bone formation. Coating-incorporated BMP-2 is more efficient in inducing bone formation than adsorbed BMP-2. The group with 5 µg of coating-incorporated BMP-2 per sample shows the most bone formation. Increasing the amount of coating-incorporated BMP-2 up to 60 µg does not improve ectopic bone formation.



2021 ◽  
Author(s):  
Marc Bohner ◽  
Yassine Maazouz ◽  
Maria-Pau Ginebra ◽  
Pamela Habibovic ◽  
Jonathan Schoenecker ◽  
...  


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Eleni Christodoulou-Vafeiadou ◽  
Christina Geka ◽  
Lydia Ntari ◽  
Ksanthi Kranidioti ◽  
Eleni Argyropoulou ◽  
...  

Abstract Background The transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis, we performed detailed characterization of the axial, peripheral, and comorbid pathologies of this model. Methods TgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae, and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by μCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically, and by μCT analysis. Results TgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings, as well as swollen and distorted hind joints. Whole-body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limbs and, also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation, and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice. Conclusions The TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.





2020 ◽  
Author(s):  
Eleni Christodoulou -Vafeiadou ◽  
Christina Geka ◽  
Lydia Ntari ◽  
Ksanthi Kranidioti ◽  
Eleni Argyropoulou ◽  
...  

Abstract BackgroundThe transmembrane-TNF transgenic mouse, TgA86, has been shown to develop spontaneously peripheral arthritis with signs of axial involvement. To assess similarity to human spondyloarthritis we performed detailed characterization of the axial, peripheral and comorbid pathologies of this model.MethodsTgA86 bone pathologies were assessed at different ages using CT imaging of the spine, tail vertebrae and hind limbs and characterized in detail by histopathological and immunohistochemical analysis. Cardiac function was examined by echocardiography and electrocardiography and bone structural parameters by µCT analysis. The response of TgA86 mice to either early or late anti-TNF treatment was evaluated clinically, histopathologically and by µCT analysis.ResultsTgA86 mice developed with 100% penetrance spontaneous axial and peripheral pathology which progressed with time and manifested as reduced body weight and body length, kyphosis, tail bendings as well as swollen and distorted hind joints. Whole body CT analysis at advanced ages revealed bone erosions of sacral and caudal vertebrae as well as of sacroiliac joints and hind limps, and also, new ectopic bone formation and eventually vertebral fusion. The pathology of these mice highly resembled that of SpA patients, as it evolved through an early inflammatory phase, evident as enthesitis and synovitis in the affected joints, characterized by mesenchymal cell accumulation and neutrophilic infiltration. Subsequently, regression of inflammation was accompanied by ectopic bone formation, leading to ankylosis. In addition, both systemic bone loss and comorbid heart valve pathology were evident. Importantly, early anti-TNF treatment, similar to clinical treatment protocols, significantly reduced the inflammatory phase of both the axial and peripheral pathology of TgA86 mice.ConclusionsThe TgA86 mice develop a spontaneous peripheral and axial biphasic pathology accompanied by comorbid heart valvular dysfunction and osteoporosis, overall reproducing the progression of pathognomonic features of human spondyloarthritis. Therefore, the TgA86 mouse represents a valuable model for deciphering the role of transmembrane TNF in the pathogenic mechanisms of spondyloarthritis and for assessing the efficacy of human therapeutics targeting different phases of the disease.





Sign in / Sign up

Export Citation Format

Share Document