scholarly journals A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

2014 ◽  
Vol 452 (3) ◽  
pp. 865-870 ◽  
Author(s):  
Naphatsawan Boonsathorn ◽  
Sumolrat Panthong ◽  
Sarawut Koksunan ◽  
Malinee Chittaganpitch ◽  
Siripaporn Phuygun ◽  
...  
2013 ◽  
Vol 20 (8) ◽  
pp. 1333-1337 ◽  
Author(s):  
Rogier Bodewes ◽  
Martina M. Geelhoed-Mieras ◽  
Jens Wrammert ◽  
Rafi Ahmed ◽  
Patrick C. Wilson ◽  
...  

ABSTRACTInfluenza A viruses cause annual epidemics and occasionally pandemics. Antibodies directed to the conserved viral nucleoprotein (NP) may play a role in immunity against various influenza A virus subtypes. Here, we assessed the immunological significance of a human monoclonal antibody directed to NPin vitro. This antibody bound to virus-infected cells but did not display virus-neutralizing activity, complement-dependent cell cytotoxicity, or opsonization of viral antigen for improved antigen presentation to CD8+T cells by dendritic cells.


2015 ◽  
Vol 59 (5) ◽  
pp. 2647-2653 ◽  
Author(s):  
Miguel Retamal ◽  
Yacine Abed ◽  
Chantal Rhéaume ◽  
Francesca Cappelletti ◽  
Nicola Clementi ◽  
...  

ABSTRACTPN-SIA28 is a human monoclonal antibody (Hu-MAb) targeting highly conserved epitopes within the stem portion of the influenza virus hemagglutinin (HA) (N. Clementi, et al, PLoS One 6:e28001, 2011,http://dx.doi.org/10.1371/journal.pone.0028001). Previousin vitrostudies demonstrated PN-SIA28 neutralizing activities against phylogenetically divergent influenza A subtypes. In this study, the protective activity of PN-SIA28 was evaluated in mice inoculated with lethal influenza A/WSN/33 (H1N1), A/Quebec/144147/09 (H1N1)pdm09, and A/Victoria/3/75 (H3N2) viruses. At 24 h postinoculation (p.i.), animals received PN-SIA28 intraperitoneally (1 or 10 mg/kg of body weight) or 10 mg/kg of unrelated Hu-MAb (mock). Body weight loss and mortality rate (MR) were recorded for 14 days postinfection (p.i.). Lung viral titers (LVT) were determined at day 5 p.i. In A/WSN/33 (H1N1)-infected groups, all untreated and mock-receiving mice died, whereas MRs of 87.5% and 25% were observed in mice that received PN-SIA28 1 and 10 mg/kg, respectively. In influenza A(H1N1) pdm09-infected groups, an MR of 75% was recorded for untreated and mock-treated groups, whereas the PN-SIA28 1-mg/kg and 10-mg/kg groups had rates of 62.5% and 0%, respectively. In A/Victoria/3/75 (H3N2)-infected animals, untreated and mock-treated animals had MRs of 37.5% and 25%, respectively, and no mortalities were recorded after PN-SIA28 treatments. Accordingly, PN-SIA28 treatments significantly reduced weight losses and resulted in a ≥1-log reduction in LVT compared to the control in all infection groups. This study confirms that antibodies targeting highly conserved epitopes in the influenza HA stem region, like PN-SIA28, not only neutralize influenza A viruses of clinically relevant subtypesin vitrobut also, more importantly, protect from a lethal influenza virus challengein vivo.


2016 ◽  
Vol 90 (23) ◽  
pp. 10446-10458 ◽  
Author(s):  
Henju Marjuki ◽  
Vasiliy P. Mishin ◽  
Ning Chai ◽  
Man-Wah Tan ◽  
Elizabeth M. Newton ◽  
...  

ABSTRACT The pandemic threat posed by emerging zoonotic influenza A viruses necessitates development of antiviral agents effective against various antigenic subtypes. Human monoclonal antibody (hMAb) targeting the hemagglutinin (HA) stalk offers a promising approach to control influenza virus infections. Here, we investigated the ability of the hMAb 81.39a to inhibit in vitro replication of human and zoonotic viruses, representing 16 HA subtypes. The majority of viruses were effectively neutralized by 81.39a at a 50% effective concentration (EC 50 ) of <0.01 to 4.9 μg/ml. Among group 2 HA viruses tested, a single A(H7N9) virus was not neutralized at 50 μg/ml; it contained HA 2 -Asp19Gly, an amino acid position previously associated with resistance to neutralization by the group 2 HA-neutralizing MAb CR8020. Notably, among group 1 HA viruses, H11-H13 and H16 subtypes were not neutralized at 50 μg/ml; they shared the substitution HA 2 -Asp19Asn/Ala. Conversely, H9 viruses harboring HA 2 -Asp19Ala were fully susceptible to neutralization. Therefore, amino acid variance at HA 2 -Asp19 has subtype-specific adverse effects on in vitro neutralization. Mice given a single injection (15 or 45 mg/kg of body weight) at 24 or 48 h after infection with recently emerged A(H5N2), A(H5N8), A(H6N1), or A(H7N9) viruses were protected from mortality and showed drastically reduced lung viral titers. Furthermore, 81.39a protected mice infected with A(H7N9) harboring HA 2 -Asp19Gly, although the antiviral effect was lessened. A(H1N1)pdm09-infected ferrets receiving a single dose (25 mg/kg) had reduced viral titers and showed less lung tissue injury, despite 24- to 72-h-delayed treatment. Taken together, this study provides experimental evidence for the therapeutic potential of 81.39a against diverse influenza A viruses. IMPORTANCE Zoonotic influenza viruses, such as A(H5N1) and A(H7N9) subtypes, have caused severe disease and deaths in humans, raising public health concerns. Development of novel anti-influenza therapeutics with a broad spectrum of activity against various subtypes is necessary to mitigate disease severity. Here, we demonstrate that the hemagglutinin (HA) stalk-targeting human monoclonal antibody 81.39a effectively neutralized the majority of influenza A viruses tested, representing 16 HA subtypes. Furthermore, delayed treatment with 81.39a significantly suppressed virus replication in the lungs, prevented dramatic body weight loss, and increased survival rates of mice infected with A(H5Nx), A(H6N1), or A(H7N9) viruses. When tested in ferrets, delayed 81.39a treatment reduced viral titers, particularly in the lower respiratory tract, and substantially alleviated disease symptoms associated with severe A(H1N1)pdm09 influenza. Collectively, our data demonstrated the effectiveness of 81.39a against both seasonal and emerging influenza A viruses.


2011 ◽  
Vol 85 (20) ◽  
pp. 10905-10908 ◽  
Author(s):  
J. C. Krause ◽  
T. Tsibane ◽  
T. M. Tumpey ◽  
C. J. Huffman ◽  
C. F. Basler ◽  
...  

2011 ◽  
Vol 91 (3) ◽  
pp. 283-287 ◽  
Author(s):  
Tatsuhiko Ozawa ◽  
Aishun Jin ◽  
Kazuto Tajiri ◽  
Masaya Takemoto ◽  
Tomoko Okuda ◽  
...  

2008 ◽  
Vol 80 (2) ◽  
pp. 168-177 ◽  
Author(s):  
R WANG ◽  
A SONG ◽  
J LEVIN ◽  
D DENNIS ◽  
N ZHANG ◽  
...  

2008 ◽  
Vol 82 (12) ◽  
pp. 5940-5950 ◽  
Author(s):  
Tadanobu Takahashi ◽  
Kouki Murakami ◽  
Momoe Nagakura ◽  
Hideyuki Kishita ◽  
Shinya Watanabe ◽  
...  

ABSTRACT Sulfatide is abundantly expressed in various mammalian organs, including the intestines and trachea, in which influenza A viruses (IAVs) replicate. However, the function of sulfatide in IAV infection remains unknown. Sulfatide is synthesized by two transferases, ceramide galactosyltransferase (CGT) and cerebroside sulfotransferase (CST), and is degraded by arylsulfatase A (ASA). In this study, we demonstrated that sulfatide enhanced IAV replication through efficient translocation of the newly synthesized IAV nucleoprotein (NP) from the nucleus to the cytoplasm, by using genetically produced cells in which sulfatide expression was down-regulated by RNA interference against CST mRNA or overexpression of the ASA gene and in which sulfatide expression was up-regulated by overexpression of both the CST and CGT genes. Treatment of IAV-infected cells with an antisulfatide monoclonal antibody (MAb) or an anti-hemagglutinin (HA) MAb, which blocks the binding of IAV and sulfatide, resulted in a significant reduction in IAV replication and accumulation of the viral NP in the nucleus. Furthermore, antisulfatide MAb protected mice against lethal challenge with pathogenic influenza A/WSN/33 (H1N1) virus. These results indicate that association of sulfatide with HA delivered to the cell surface induces translocation of the newly synthesized IAV ribonucleoprotein complexes from the nucleus to the cytoplasm. Our findings provide new insights into IAV replication and suggest new therapeutic strategies.


2009 ◽  
Vol 5 (3) ◽  
pp. e1000350 ◽  
Author(s):  
Reiko Yoshida ◽  
Manabu Igarashi ◽  
Hiroichi Ozaki ◽  
Noriko Kishida ◽  
Daisuke Tomabechi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document