viral antigen
Recently Published Documents


TOTAL DOCUMENTS

551
(FIVE YEARS 77)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
pp. 030098582110710
Author(s):  
Malgorzata Ciurkiewicz ◽  
Federico Armando ◽  
Tom Schreiner ◽  
Nicole de Buhr ◽  
Veronika Pilchová ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in an ongoing pandemic with millions of deaths worldwide. Infection of humans can be asymptomatic or result in fever, fatigue, dry cough, dyspnea, and acute respiratory distress syndrome with multiorgan failure in severe cases. The pathogenesis of COVID-19 is not fully understood, and various models employing different species are currently applied. Ferrets can be infected with SARS-CoV-2 and efficiently transmit the virus to contact animals. In contrast to hamsters, ferrets usually show mild disease and viral replication restricted to the upper airways. Most reports have used the intranasal inoculation route, while the intratracheal infection model is not well characterized. Herein, we present clinical, virological, and pathological data from young ferrets intratracheally inoculated with SARS-CoV-2. Infected animals showed no significant clinical signs, and had transient infection with peak viral RNA loads at 4 days postinfection, mild to moderate rhinitis, and pulmonary endothelialitis/vasculitis. Viral antigen was exclusively found in the respiratory epithelium of the nasal cavity, indicating a particular tropism for cells in this location. Viral antigen was associated with epithelial damage and influx of inflammatory cells, including activated neutrophils releasing neutrophil extracellular traps. Scanning electron microscopy of the nasal respiratory mucosa revealed loss of cilia, shedding, and rupture of epithelial cells. The currently established ferret SARS-CoV-2 infection models are comparatively discussed with SARS-CoV-2 pathogenesis in mink, and the advantages and disadvantages of both species as research models for zoonotic betacoronaviruses are highlighted.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Dorian Petonnet ◽  
Stéphane Marot ◽  
Isabelle Leroy ◽  
Julien Cohier ◽  
Charline Ramahefasolo ◽  
...  

SARS-CoV-2 viral antigen detection may be an interesting alternative to RT-PCR for the diagnosis of SARS-CoV-2 infection as a less laborious or expensive method but requires validation. This study aimed to compare the performance of the DiaSorin™ LiaisonXL automated quantitative antigen test (QAT) and the AAZ™ rapid antigen test (RAT) to the DiaSorin™ MDX RT-PCR assay. A total of 242 nasopharyngeal samples were tested at La Pitié-Salpêtrière University Hospital (Paris, France). Performances for the detection of variants of SARS-CoV-2 were further investigated. RATs were visually read for qualitative results and band intensity was determined. Overall sensitivity was 63.2% for QAT and 58.6% for RAT. For RT-PCR Ct value 25, sensitivity was 89.8% for both tests. Both tests showed comparable sensitivity for detection of variants. There was a strong relationship between antigen concentration and band positivity. On the same set of samples these tests share similar performances.


2021 ◽  
Author(s):  
Krishnendu Chakraborty ◽  
Abishek Chandrashekar ◽  
Adam Sidaway ◽  
Elizabeth Latta ◽  
Jingyou Yu ◽  
...  

COVID-19 has forced rapid clinical translation of novel vaccine technologies, principally mRNA vaccines, that have resulted in meaningful efficacy and adequate safety in response to the global pandemic. Notwithstanding this success, there remains an opportunity for innovation in vaccine technology to address current limitations and meet the challenges of inevitable future pandemics. We describe a universal vaccine cell (UVC) rationally designed to mimic the natural physiologic immunity induced post viral infection of host cells. Induced pluripotent stem cells were CRISPR engineered to delete MHC-I expression and simultaneously overexpress a NK Ligand adjuvant to increase rapid cellular apoptosis which was hypothesized to enhance viral antigen presentation in the resulting immune microenvironment leading to a protective immune response. Cells were further engineered to express the parental variant WA1/2020 SARS-CoV-2 spike protein as a representative viral antigen prior to irradiation and cryopreservation. The cellular vaccine was then used to immunize non-human primates in a standard 2-dose, IM injected prime + boost vaccination with 1e8 cells per 1 ml dose resulting in robust neutralizing antibody responses (1e3 nAb titers) with decreasing levels at 6 months duration. Similar titers generated in this established NHP model have translated into protective human neutralizing antibody levels in SARS-Cov-2 vaccinated individuals. Animals vaccinated with WA1/2020 spike antigens were subsequently challenged with 1.0 x 105 TCID50 infectious Delta (B.1.617.2) SARS-CoV-2 in a heterologous challenge which resulted in an approximately 3-log order decrease in viral RNA load in the lungs. These heterologous viral challenge results reflect the ongoing real-world experience of original variant WA1/2020 spike antigen vaccinated populations exposed to rapidly emerging variants like Delta and now Omicron. This cellular vaccine is designed to be a rapidly scalable cell line with a modular poly-antigenic payload to allow for practical, large-scale clinical manufacturing and use in an evolving viral variant environment. Human clinical translation of the UVC is being actively explored for this and potential future pandemics.


2021 ◽  
pp. 030098582110486
Author(s):  
Ya-Mei Chen ◽  
Nicholas K. Gabler ◽  
Eric R. Burrough

Porcine epidemic diarrhea virus (PEDV) infection leads to diarrhea and subsequently to decreased feed efficiency and growth in weaned pigs. Given that few studies have addressed the host-virus interaction in vivo, this study focused on endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in jejunal epithelial cells during PEDV infection. Eight-week-old pigs ( n = 64) were orally inoculated with PEDV IN19338 strain ( n = 40) or sham-inoculated ( n = 24) and analyzed for PEDV viral RNA shedding using reverse transcription–quantitative polymerase chain reaction and for viral antigen within enterocytes using immunohistochemistry (IHC). ER stress was analyzed in a subset of 9 PEDV-inoculated pigs with diarrhea, detectable viral RNA, and viral antigen (PEDV-immunopositive pigs). Compared with control pigs, PEDV-immunopositive pigs had a reduced ratio of villus height to crypt depth in the jejunum ( P = .002, n = 9 per group), consistent with intestinal injury. The protein levels of ATF6, IRE1, PERK, XBP1u, ATF4, GRP78, and caspase-3 were assessed in jejunal epithelial cells at the villus tips via IHC. Both ER stress and UPR were demonstrated in PEDV-immunopositive pigs by the increased expression of ATF6 ( P = .047), IRE1 ( P = .007), and ATF4 ( P = .001). The expression of GRP78 ( P = .024) and caspase-3 ( P = .004) were also increased, indicating an accompanying increase in ER protein folding capacity and apoptosis. Overall, these results reveal that PEDV infection induces ER stress and UPR in intestinal epithelial cells of weaned pigs.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3279-3279
Author(s):  
Taehoon Shin ◽  
Yifan Zhou ◽  
So Gun Hong ◽  
John-Paul Todd ◽  
Shayne Andrew ◽  
...  

Abstract Clinical manifestations of infection with the novel SARS-CoV-2 in humans are widely varied, ranging from asymptomatic to COVID-19 respiratory failure and multiorgan damage. Profound inflammation is the hallmark of severe COVID-19 disease, and commonly does not occur until the second week of infection. Although risk factors for this late hyperinflammatory disease have been identified, most notably age and pre-existing co-morbidities, even within high-risk groups the specific factors leading to severe COVID-19 illness remain elusive. Acquired somatic mutations in hematopoietic stem and progenitor cells (HSPCs), termed clonal hematopoiesis (CH), are associated with advanced age, and loss of function (LOF) mutations in certain genes, most commonly DNMT3A and TET2, have been linked to a marked hyperinflammatory phenotype as well as clonal expansion of mutant HSPCs. Given the similar age range of frequent CH and severe COVID-19 disease, the presence of CH could impact the risk of severe COVID-19. Several human cohort studies have suggested this relationship may exist, but results to date are conflicting. Rhesus macaques (RM) have been established as a model for SARS-CoV infection and are being utilized to test therapies and vaccine development, but up to now, macaques have not been reported to develop late hyperinflammatory COVID-19 disease. We have created a robust RM model of CH by introducing LOF TET2 mutations into young adult HSPC via CRISPR/Cas9 followed by autologous transplantation, recapitulating the clonal expansion and hyperinflammatory phenotype. Thus, we hypothesized that macaques with CH could develop severe late COVID-19 disease and be utilized as a model to study disease pathophysiology or test therapeutic approaches. Macaques with either engineered (n=2) or natural CH (n=1) along with age-matched transplanted controls (n=3) were inoculated with SARS-CoV-2 and monitored clinically and via laboratory studies until 12 days post-inoculation (dpi). Macaques normally clear infection and symptoms within 3-5 days of infection. No significant differences in clinical symptoms and blood counts were noted, however, an aged animal with natural DNMT3A CH died on 10 dpi. IL-6 levels were somewhat higher in sera of the CH animals until 12 dpi, and in BAL, mean concentrations of MCP-1, IL-6, IL-8 and MIP-1b were consistently higher in CH macaques compared to controls. Interestingly, we found the median copy number of subgenomic SARS-CoV-2 RNA was higher at every timepoint in the CH group as compared with the control group, in both upper and lower respiratory samples. Lung sections from euthanasia at 10 or 12 dpi showed evidence of mild inflammation in all animals. However, in the immunohistochemical analysis, the viral antigen was detected in the lung tissues of all three animals in the CH group even at the time of autopsy, whereas only one animal of three controls had detectable viral antigen. Although the striking inflammation and serious disease have not been observed, data so far provide evidence of potential pathophysiological differences with or without CH upon SARS-CoV-2 infection. We continue to expand sample size and conduct further analyses to draw a solid conclusion, but we believe this model may be of benefit to understand the relationship between COVID-19 disease and CH. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A689-A689
Author(s):  
Naina Singhi ◽  
Carolyn Shasha ◽  
Sylvia Lee ◽  
Julia Szeto ◽  
Ata Moshiri ◽  
...  

BackgroundTumor-antigen specific CD4+ T cells are crucial for the efficacy of antibodies that block immune checkpoint proteins in mouse tumor models, but their activities in human tumor immunity are less clear. CD8+ T cells infiltrating human tumors, including those specific for tumor antigens, have been studied using single cell profiling techniques and exist in a variety of dysfunctional states. The transcriptional states of tumor-specific CD4+ T cells present in tumors and their potential contributions to the tumor microenvironment are less well understood.MethodsWe used targeted single cell RNA sequencing and matching of T cell receptor (TCR) sequences to identify phenotypic signatures that discriminated tumor antigen- and viral antigen-specific CD4+ T cells infiltrating human melanoma tumors in four patients. The presence of CD4+ T cells with these signatures was correlated with the number and phenotype of other immune cells in the tumor microenvironment in an extended cohort of 20 patients.ResultsWe identified 259 CD4+ T cells representing 40 different TCR clonotypes specific for 13 neoantigens and 108 cells representing 14 TCR clonotypes specific for self-antigens in four melanoma patients. High expression of CXCL13 defined conventional CD4+ T cells that recognize tumor associated neoantigens and self-antigens from bystander and viral antigen-specific CD4+ T cells. Tumor-reactive CD4+ T cells could be subdivided into clusters expressing memory and T follicular helper markers, and those expressing cytolytic markers and IFN-g. In an extended cohort of 20 patients with melanoma, the frequency of CXCL13+ CD4+ T cells in the tumor microenvironment correlated with the presence and proliferation of CD8+ T cells, the presence and maturation of B cells, the activation of interferon responsive genes in tumor associated macrophages, and patient survival. CD4+ T cells with similar transcriptional signatures were identified in data sets from breast and non-small cell lung cancer, suggesting these markers may enrich for tumor-reactive CD4+ T cells in many cancers.ConclusionsThese results identify a subset of tumor infiltrating conventional CD4+ T cells in melanoma that are enriched for reactivity to tumor antigens and exist in multiple phenotypic states. Correlations of the presence of these cells with the frequency and phenotype of other immune cells suggest roles for these tumor antigen-specific CD4+ T cells in providing CD8+ T cell help, driving recruitment and maturation of B cells, and activating macrophages. Isolating such cells based on their unique phenotype and utilizing them for adoptive therapy could alter the tumor microenvironment for therapeutic benefit.Ethics ApprovalAll Patient samples in this study were obtained from patients who signed informed consent in a study approved by the institutional review board of the Fred Hutchinson Cancer Research Center (protocol #2643).


2021 ◽  
Author(s):  
Yosuke Hirotsu ◽  
Toshiharu Tsutsui ◽  
Yumiko Kakizaki ◽  
Yoshihiro Miyashita ◽  
Fumiaki Iwase ◽  
...  

Abstract Vaccination is expected to suppress COVID-19 infection. However, breakthrough infections have increased following vaccination because of the spread of variants of concern, notably Delta (B.1.617.2 lineage). Virological and serological data pertaining to post-vaccination infections are limited. Here, we conducted genome analysis determined the viral lineages that infected patients following vaccination. Changes in viral load, antibody levels, and viral antigen levels following infection were analyzed. At the time of infection, Delta-infected patients had a 6.2-fold and 12.3-fold higher viral load compared with Alpha and other lineages, respectively. Viral lineages (Delta:Alpha:Other) of infection were 0:12:0 in the fully vaccinated group, 1:11:0 in the partially vaccinated group, 9:16:0 in the shortly after vaccination group, and 254:229:165 in the unvaccinated group. Breakthrough infections occurred regardless of retention of high antibody titers following vaccination. At the time of diagnosis, Delta-infected patients showed high viral load with or without vaccination. However, no fully vaccinated patients developed severe disease, and the rapid increase in anti-spike antibodies occurred approximately 1 week after onset of symptoms. Concomitantly, a decrease in viral antigen levels was observed in fully vaccinated patients, shortening the time to negative result by approximately 2 days compared with unvaccinated patients. Collectively, even if breakthrough infection occurs, the rapid antibody response in fully vaccinated individuals contributes to prevention of severe disease, possibly because of suppression of viral replication.


2021 ◽  
Author(s):  
Geno Guerra ◽  
Linda Kachuri ◽  
George Wendt ◽  
Helen M Hansen ◽  
Steven J Mack ◽  
...  

Background Multiple studies have implicated infections in glioma susceptibility, but the evidence remains inconsistent. Genetic variants in the human leukocyte antigen (HLA) region modulate host response to infection and have been linked to glioma risk. In this study we leveraged genetic predictors of antibody response to 10 viral antigens to investigate the relationship and glioma risk and survival. Methods Genetic reactivity scores (GRS) for each antigen were derived from genome-wide significant (p<5x10-8) variants associated with immunoglobulin G antibody response in the UK Biobank cohort. We conducted parallel analyses of glioma risk and survival for each GRS and HLA alleles imputed at two-field resolution using data from 3418 glioma patients and 8156 controls. Results Genetic reactivity scores to Epstein-Barr virus (EBV) ZEBRA and EBNA antigens and Merkel cell polyomavirus (MCV) VP1 antigen were suggestively associated with glioma risk and survival (unadjusted p<0.05). GRSZEBRA and GRSMCV were associated in opposite directions with risk of IDH wild type gliomas (Odds ratio ORZEBRA=0.91, p=0.007 / ORMCV=1.11, p=0.005). GRSEBNA was associated with both increased risk for IDH mutated gliomas (OR=1.09, p=0.04) and improved survival (Hazard ratio HR=0.86, p=0.01). HLA-DQA1*03:01 was significantly associated with decreased risk of glioma overall (OR=0.85, p=3.96x10-4) after multiple testing adjustment. Conclusion This first systematic investigation of the role of genetic determinants of viral antigen reactivity in glioma risk and survival provides insight into complex immunogenomic mechanisms of glioma pathogenesis. These results may also inform applications of antiviral based therapies in the treatment of glioma.


2021 ◽  
Vol 24 ◽  
pp. 100517
Author(s):  
Mercedes Elizalde ◽  
Micaela Martinez ◽  
Micaela Speroni ◽  
Luciana Tadey ◽  
Mammana Lilia ◽  
...  

2021 ◽  
pp. 030098582110353
Author(s):  
Silvia Carnaccini ◽  
Chiara Palmieri ◽  
Simone Stoute ◽  
Manuela Crispo ◽  
H. L. Shivaprasad

Infectious laryngotracheitis (ILT) is an important upper respiratory disease of chickens. Gross and histologic lesions of ILT in chickens are compared to immunohistochemistry to evaluate the diagnostic test sensitivity. A total of 31 separate ILT-confirmed necropsy submissions (12 commercial meat-type flocks, 13 egg-type producers, and 6 backyard flocks) were arbitrarily selected. Each submission ranged from 1 to 18 birds, for a total of 246 chickens. Cases with available formalin-fixed tissues were selected to include a range of bird production types, ages, clinical histories, and severity of macroscopic and histologic lesions. Macroscopic findings in the respiratory tract varied from increased mucus (55.6%) to fibrinonecrotic exudate (20.3%) and hemorrhages in the larynx and trachea (13.0%). Syncytia with intranuclear inclusion bodies were present in the respiratory tract epithelium with or without hemorrhages. Sections of conjunctiva, sinus, larynx, trachea, lung, and air sac were analyzed by immunohistochemistry (IHC) to detect gallid alphaherpesvirus 1 (GaHV-1) antigen. Positive immunolabeling was detected in the cytoplasm and nuclei of syncytia and epithelial cells in 18/22 conjunctivae (82%), 12/13 sinuses (92%), 18/22 larynxes (82%), 23/25 tracheas (92%), 10/21 lungs (57%), and 3/8 air sacs (37%). Of the 34 tissues with no visible syncytia or inclusion bodies, 8 were positive by IHC. In conclusion, IHC was useful to study the viral antigen tissue distribution and support the diagnosis of ILT when the histopathologic interpretation was doubtful.


Sign in / Sign up

Export Citation Format

Share Document