Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek)

2018 ◽  
Vol 16 ◽  
pp. 163-171 ◽  
Author(s):  
Punam Kumari ◽  
Mukesh Meena ◽  
Pooja Gupta ◽  
Manish Kumar Dubey ◽  
Gopal Nath ◽  
...  
1996 ◽  
Vol 42 (3) ◽  
pp. 279-283 ◽  
Author(s):  
T. C. Noel ◽  
C. Sheng ◽  
C. K. Yost ◽  
R. P. Pharis ◽  
M. F. Hynes

Early seedling root growth of the nonlegumes canola (Brassica campestris cv. Tobin, Brassica napus cv. Westar) and lettuce (Lactuca saliva cv. Grand Rapids) was significantly promoted by inoculation of seeds with certain strains of Rhizobium leguminosarum, including nitrogen- and nonnitrogen-fixing derivatives under gnotobiotic conditions. The growfh-promotive effect appears to be direct, with possible involvement of the plant growth regulators indole-3-acetic acid and cytokinin. Auxotrophic Rhizobium mutants requiring tryptophan or adenosine (precursors for indole-3-acetic acid and cytokinin synthesis, respectively) did not promote growth to the extent of the parent strain. The findings of this study demonstrate a new facet of the Rhizobium–plant relationship and that Rhizobium leguminosarum can be considered a plant growth-promoting rhizobacterium (PGPR).Key words: Rhizobium, plant growth-promoting rhizobacteria, PGPR, indole-3-acetic acid, cytokinin, roots, auxotrophic mutants.


2000 ◽  
Vol 30 (6) ◽  
pp. 845-854 ◽  
Author(s):  
Masahiro Shishido ◽  
Christopher P Chanway

Seeds of two hybrid spruce (Picea glauca (Moench) Voss × Picea engelmannii Parry ex Engelm.) ecotypes were inoculated with one of six plant growth-promoting rhizobacteria (PGPR) strains previously shown to be able to stimulate spruce growth in controlled environments. The resulting seedlings were grown in the greenhouse for 17 weeks before outplanting at four reforestation sites. Inoculation with five of the six strains caused significant seedling growth promotion in the greenhouse, which necessitated analysis of relative growth rates (RGR) to evaluate seedling performance in the field. Four months after outplanting, most strains enhanced spruce shoot or root RGRs in the field, but seedling growth responses were strain specific. For example, Pseudomonas strain Ss2-RN significantly increased both shoot and root RGRs by 10-234% at all sites, but increases of 28-70% were most common. In contrast, Bacillus strain S20-R was ineffective at all outplanting sites. In addition, seedlings inoculated with four of the six strains had significantly less shoot injury than control seedlings at all sites. Evaluation of root colonization by PGPR indicated that bacterial population declines were not related to spruce growth response variability in the field. Our results indicate that once plant growth promotion is induced in the greenhouse, seedling RGR can increase by more than 100% during the first growing season in the field. However RGR increases of 21-47% were more common and may be more representative of the magnitude of biomass increases that can result from PGPR inoculation.


Sign in / Sign up

Export Citation Format

Share Document