The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions

2011 ◽  
Vol 62 (3) ◽  
pp. 1321-1330 ◽  
Author(s):  
Maqshoof Ahmad ◽  
Zahir Ahmad Zahir ◽  
Hafiz Naeem Asghar ◽  
Muhammad Arshad
Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 894
Author(s):  
Emad M. Hafez ◽  
Hany S. Osman ◽  
Usama A. Abd El-Razek ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara ◽  
...  

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant−1, number of seeds pod−1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Amjid Khan ◽  
Shehzad Asad ◽  
Asghari Bano ◽  
Rashid Abbas Khan ◽  
Tauqeer Ahmed Qadri

2020 ◽  
Vol 19 (1) ◽  
pp. 97-105
Author(s):  
Gölgen Bahar Öztekin ◽  
Yüksel Tüzel

This study was conducted in order to determine the effects of oxygen enrichment of nutrient solution coupled with plant growth promoting rhizobacteria on soilless grown iceberg lettuce (cv. ‘Papiro’) production. Seeds were treated with Bacillus subtilis, Pseudomonas putida, P. fluorescens, P. punonensis and combined application of B. subtilis + P. fluorescens and were sown into vermicompost : peat (1 : 1.5, v/v) mixture on January 14th, 2015. After germination in growth chamber, seedlings were moved to a greenhouse for seedling growing till they were ready for planting. Seedlings were transplanted to the polyethylene greenhouse 35 days after sowing. Perlite as growing medium was used in open-system soilless culture. Nutrient solution was aerated with an air compressor and applied to plants 2 days after planting with drip irrigation. To diffuse oxygen into nutrient solution in large bubbles, a circular air-stone commonly used in fisheries was used. The nutrient solution without oxyfertigation and plants not treated with bacteria constituted the control treatment. Experiments were conducted in randomized plots design with 2 factors and 3 replications. Heads were harvested 2 months after transplanting. Yield and head quality parameters of head were determined. It was concluded that oxygen enrichment of nutrient solution through a compressor (aeration) provided increases in yield and plant growth. Especially root development, head size and leaf number were higher in plants grown with aerated nutrient solution. Among the tested bacteria, B. subtilis, P. fluorescens and B. subtilis + P. fluorescens were found promising due to the their higher performance under aerated conditions on greenhouse lettuce grown in perlite.


Sign in / Sign up

Export Citation Format

Share Document