mung bean
Recently Published Documents





2022 ◽  
Vol 176 ◽  
pp. 114365
Chunyan Su ◽  
Xiuyun Zhang ◽  
Xiangzhen Ge ◽  
Huishan Shen ◽  
Qian Zhang ◽  

2022 ◽  
Vol 12 ◽  
Versha Rohilla ◽  
Rajesh Kumar Yadav ◽  
Atman Poonia ◽  
Ravika Sheoran ◽  
Gita Kumari ◽  

Mung bean [Vigna radiata (L.) Wilczek] is an important short-duration grain legume widely known for its nutritional, soil ameliorative, and cropping system intensification properties. This study aims at evaluating genetic diversity among mung bean genotypes and detecting genomic regions associated with various yield attributing traits and yellow mosaic disease (YMD) resistance by association mapping. A panel of 80 cultivars and advanced breeding lines was evaluated for 10 yield-related and YMD resistance traits during kharif (monsoon) and summer seasons of 2018–2019 and 2019–2020. A total of 164 genome-wide simple sequence repeat (SSR) markers were initially screened, out of which 89 were found polymorphic which generated 317 polymorphic alleles with an average of 3.56 alleles per SSR locus. The number of alleles at each locus varied from 2 to 7. The population genetic structure analysis grouped different genotypes in three major clusters and three genetically distinct subpopulations (SPs) (i.e., SP-1, SP-2, and SP-3) with one admixture subpopulation (SP-4). Both cluster and population genetic structure analysis categorized the advanced mung bean genotypes in a single group/SP and the released varieties in other groups/SPs, suggesting that the studied genotypes may have common ancestral history at some level. The population genetic structure was also in agreement with the genetic diversity analysis. The estimate of the average degree of linkage disequilibrium (LD) present at the genome level in 80 mung bean genotypes unveiled significant LD blocks. Over the four seasons, 10 marker-trait associations were observed significant for YMD and four seed yield (SY)-related traits viz., days to flowering, days to maturity, plant height, and number of pods per plant using the mixed linear model (MLM) method. These associations may be useful for marker-assisted mung bean yield improvement programs and YMD resistance.

Rekha Ratanoo ◽  
S.S. Walia ◽  
K.S. Saini ◽  
G.S. Dheri

Background: Inclusion of legume crops in multiple cropping systems has become crucial to increase the sustainability of agroecosystems. Short duration mung bean can be easily fitted into many cropping sequences which also turns the farming highly remunerative along with strengthening the sustainability. The current study was aimed to evaluate residual effect of nutrient management on performance of summer mung bean in a gobhi sarson - summer mung bean sequence. Methods: During the period of 2016-17 and 2017-18 different doses of chemical fertilizers (NPK), combination of FYM with chemical fertilizers and different biofertilizers alone as well as their combination were evaluated to find out their residual effect on summer mung bean grown after the gobhi sarson crop. The data on growth parameters, yield attributes viz; plant height, dry matter accumulation, number of branches per plant, number of pods per plant, number of seeds per pod, 100- seed weight were collected. The seed and biological yield from different treatments was also evaluated. Result: All growth parameters, yield attributes, seed and biological yield of summer mung bean were affected significantly with chemical fertilizers, their combined application with FYM treatments as well as different biofertilizers treatments applied to preceding gobhi sarson. Growth and yield significantly improved with each incremental dose of chemical fertilizers i.e. from 0 to 50% RDF, 50 to 75% RDF, 75 to 100% RDF while 50% RDF + FYM @ 10 t ha-1 being the best treatment. The treatment with consortium showed significantly maximum yield and growth parameters followed by combined application of Azotobacter + PSB, PSB alone, Azotobacter alone and no inoculation treatments, respectively.

2022 ◽  
Vol 14 (2) ◽  
pp. 864
Opinder Singh Sandhu ◽  
Mangi L. Jat ◽  
Rajeev Kumar Gupta ◽  
Harmeet Singh Thind ◽  
Harminder Singh Sidhu ◽  

Decomposition influences carbon and nutrient cycling from crop residues. The nylon-mesh-bag technique was implied to study the decomposition and N-release dynamics from different crop residues under field conditions. The four types of residues were: maize (lower than 50% below the cob), wheat (lower than 25% of wheat stubbles), a whole mung bean residue, and a mixture of wheat + mung bean residue (1:1 ratio) put on the soil surface and in below the sub-surface. Decomposition and N release from both at-surface- and below-surface-placed residues were accurately described by a single-pool first-order exponential decay function as a function of thermal time (based on the accumulative daily mean temperature). The simple first-order exponential model met the criteria of goodness of fit. Throughout the decomposition cycle (one thermal year), the rate of decomposition as measured by a decrease in residue mass and the release of total N were statistically higher from the sub-surface compared to the surface-placed residue, irrespective of the residue type. At the end of the 150-day decomposition cycle, the release of total N was highest in mung bean (32.0 kg N ha−1), followed by maize (31.5 kg N ha−1) > wheat + mung bean (16.1 kg N ha−1), and the minimum (6.54 kg N ha−1) in wheat residue. Crop residues with a wider C/N ratio such as maize and wheat, when applied on the soil surface in conservation agriculture, caused the decomposition to occur at slower rates, thereby providing long-term beneficial effects on the soil thermal regime, soil moisture conservation, and C sequestration in North-West India.

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 202
Saqib Gulzar ◽  
Krisana Nilsuwan ◽  
Navaneethan Raju ◽  
Soottawat Benjakul

Shrimp oil (SO) rich in n-3 fatty acids and astaxanthin, mixed with antioxidant-rich tea seed oil (TSO), was microencapsulated using mung bean protein isolate and sodium alginate and fortified into whole wheat crackers. SO and TSO mixed in equal proportions were emulsified in a solution containing mung bean protein isolate (MBPI) and sodium alginate (SA) at varied ratios. The emulsions were spray-dried to entrap SO-TSO in MBPI-SA microcapsules. MBPI-SA microcapsules loaded with SO-TSO showed low to moderately high encapsulation efficiencies (EE) of 32.26–72.09% and had a fair flowability index. Two selected microcapsules with high EE possessed the particle sizes of 1.592 and 1.796 µm with moderate PDI of 0.372 and 0.403, respectively. Zeta potential values were −54.81 mV and −53.41 mV. Scanning electron microscopic (SEM) images indicated that microcapsules were spherical in shape with some shrinkage on the surface and aggregation took place to some extent. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analyses of samples empirically validated the presence of SO-TSO in the microcapsules. Encapsulated SO-TSO showed superior oxidative stability and retention of polyunsaturated fatty acids (PUFAs) to unencapsulated counterparts during storage of 6 weeks. When SO-TSO microcapsules were fortified in whole wheat crackers at varying levels (0–10%), the crackers showed sensorial acceptability with no perceivable fishy odor. Thus, microencapsulation of SO-TSO using MBPI-SA as wall materials could be used as an alternative carrier system, in which microcapsules loaded with PUFAs could be fortified in a wide range of foods.

S.D. Rajput ◽  
R.S. Bhadane ◽  
K.T. Suryawanshi ◽  
M.R. Bedis

Background: Mung bean is one of the important pulse crop requiring low inputs. The productivity of kharif mung bean is very low. The present improved varieties have lower yield potential and disease susceptibility. There is a need to develop high yielding varieties combined with early to mid synchronous maturity, better quality and resistance/tolerance to major pests and diseases. Methods: The green gram var. Phule Chetak was developed by pedigree selection method from a cross between SML-668 X Naval at Oilseeds Research Station, MPKV, Jalgaon. It was tested over several locations and environments for its stability performance. Result: The results indicated a significant improvement in yield level under field conditions. The new variety Phule Chetak reported an average yield of 1003 kg/ha which is 26.96%, 36.46%, 29.42%, 21.72%, 17.58% and 13.21 per cent higher than the check varieties Vaibhav, BPMR-145, AKM-8802, BM-2002-1, BM-2003-2 and Utkarsha respectively. It is bold seeded having early maturity, moderately resistant to major diseases like powdery mildew, mungbean yellow mosaic virus under field conditions. Considering its consistent performance, the mung bean genotype PM-707-5 has been released for cultivation in the kharif season for Maharashtra under the name of Phule Chetak in Joint Agresco during 29-30 October, 2020 held at Dr PDKV, Akola.

2022 ◽  
pp. 107485
Ying Wang ◽  
Jing Zhao ◽  
Shucheng Zhang ◽  
Xiangzhong Zhao ◽  
Yuanfa Liu ◽  

Sign in / Sign up

Export Citation Format

Share Document