Dynamic modeling of biodiesel production from simulated waste cooking oil using immobilized lipase

2009 ◽  
Vol 44 (2-3) ◽  
pp. 256-262 ◽  
Author(s):  
Sulaiman Al-Zuhair ◽  
Ali Dowaidar ◽  
Hassan Kamal
Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 914 ◽  
Author(s):  
Yang ◽  
Zhang

Enzymatic production of biodiesel from waste cooking oil (WCO) could contribute to resolving the problems of energy demand and environment pollutions.In the present work, Burkholderia cepacia lipase (BCL) was activated by surfactant imprinting, and subsequently immobilized in magnetic cross-linked enzyme aggregates (mCLEAs) with hydroxyapatite coated magnetic nanoparticles (HAP-coated MNPs). The maximum hyperactivation of BCL mCLEAs was observed in the pretreatment of BCL with 0.1 mM Triton X-100. The optimized Triton-activated BCL mCLEAs was used as a highly active and robust biocatalyst for biodiesel production from WCO, exhibiting significant increase in biodiesel yield and tolerance to methanol. The results indicated that surfactant imprinting integrating mCLEAs could fix BCL in their active (open) form, experiencing a boost in activity and allowing biodiesel production performed in solvent without further addition of water. A maximal biodiesel yield of 98% was achieved under optimized conditions with molar ratio of methanol-to-WCO 7:1 in one-time addition in hexane at 40 °C. Therefore, the present study displays a versatile method for lipase immobilization and shows great practical latency in renewable biodiesel production.


2019 ◽  
Vol 8 (1) ◽  
pp. 828-836 ◽  
Author(s):  
Maria Sarno ◽  
Mariagrazia Iuliano

Abstract Biodiesel production from waste cooking oil was obtained using Thermomyces lanuginosus (TL) lipase (E.C.3.1.1.3) anchored on Fe3O4/Au nanoparticles through physical interactions. A remarkable biodiesel yield of ∼90% was obtained without any pre-treatment and at a lipase concentration of 20%, 45°C reaction temperature, 1:6 oil/methanol molar ratio, after 24 h. The immobilized enzyme showed fast kinetic (the biodiesel yield was already of 34.6% after only 3 h) and activity slightly dependent on the length of the acid chains. The effect of the Au NPs sizes was monitored, to study the role of Au conduction centres in facilitating enzymes favourable orientation. The immobilized lipase activity stays above 74% after the first 3 cycles of use. In particular, the produced biodiesel presents an ester content of 97.8% ± 0.21 and a linolenic methyl ester content of 0.53% ± 0.03, in agreement with EN14214 requirements.


Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


ACS Omega ◽  
2021 ◽  
Vol 6 (13) ◽  
pp. 9204-9212
Author(s):  
Neelam Khan ◽  
Sang H. Park ◽  
Lorraine Kadima ◽  
Carlove Bourdeau ◽  
Evelyn Calina ◽  
...  

Author(s):  
Shahabaldin Rezania ◽  
Zahra Sotoudehnia Korrani ◽  
Mohammad Ali Gabris ◽  
Jinwoo Cho ◽  
Krsihna Kumar Yadav ◽  
...  

2015 ◽  
Vol 77 ◽  
pp. 521-526 ◽  
Author(s):  
Zahoor Ullah ◽  
Mohamad Azmi Bustam ◽  
Zakaria Man

Sign in / Sign up

Export Citation Format

Share Document