Effect of operating conditions on N2O emissions from one-stage partial nitritation-anammox reactors

2019 ◽  
Vol 143 ◽  
pp. 24-33 ◽  
Author(s):  
Xinyu Wan ◽  
Janis E. Baeten ◽  
Eveline I.P. Volcke
2008 ◽  
Vol 58 (5) ◽  
pp. 1113-1120 ◽  
Author(s):  
S. E. Vlaeminck ◽  
L. F. F. Cloetens ◽  
M. Carballa ◽  
N. Boon ◽  
W. Verstraete

A novel and efficient way of removing nitrogen from wastewater poor in biodegradable organic carbon, is the combination of partial nitritation and anoxic ammonium oxidation (anammox), as in the one-stage oxygen-limited autotrophic nitrification/denitrification (OLAND) process. Since anoxic ammonium-oxidizing bacteria grow very slowly, maximum biomass retention in the reactor is required. In this study, a lab-scale sequencing batch reactor (SBR) was used to develop granular, rapidly settling biomass. With SBR cycles of one hour and a minimum biomass settling velocity of 0.7 m/h, OLAND granules were formed in 1.5 months and the nitrogen removal rate increased from 50 to 450 mg N L−1 d−1 in 2 months. The granules had a mean diameter of 1.8 mm and their aerobic and anoxic ammonium-oxidizing activities were well equilibrated to perform the OLAND reaction. Fluorescent in-situ hybridization (FISH) demonstrated the presence of both β-proteobacterial aerobic ammonium oxidizers and planctomycetes (among which anoxic ammonium oxidizers) in the granules. The presented results show the applicability of rapidly settling granular biomass for one-stage partial nitritation and anammox.


Author(s):  
Armin Silaen ◽  
Ting Wang

Numerical simulations of the coal gasification process inside a generic 2-stage entrained-flow gasifier fed with Indonesian coal at approximately 2000 metric ton/day are carried out. The 3D Navier–Stokes equations and eight species transport equations are solved with three heterogeneous global reactions, three homogeneous reactions, and two-step thermal cracking equation of volatiles. The chemical percolation devolatilization (CPD) model is used for the devolatilization process. This study is conducted to investigate the effects of different operation parameters on the gasification process including coal mixture (dry versus slurry), oxidant (oxygen-blown versus air-blown), and different coal distribution between two stages. In the two-stage coal-slurry feed operation, the dominant reactions are intense char combustion in the first stage and enhanced gasification reactions in the second stage. The gas temperature in the first stage for the dry-fed case is about 800 K higher than the slurry-fed case. This calls for attention of additional refractory maintenance in the dry-fed case. One-stage operation yields higher H2, CO and CH4 combined than if a two-stage operation is used, but with a lower syngas heating value. The higher heating value (HHV) of syngas for the one-stage operation is 7.68 MJ/kg, compared with 8.24 MJ/kg for two-stage operation with 75%–25% fuel distribution and 9.03 MJ/kg for two-stage operation with 50%–50% fuel distribution. Carbon conversion efficiency of the air-blown case is 77.3%, which is much lower than that of the oxygen-blown case (99.4%). The syngas heating value for the air-blown case is 4.40 MJ/kg, which is almost half of the heating value of the oxygen-blown case (8.24 MJ/kg).


2018 ◽  
Vol 203 ◽  
pp. 559-573 ◽  
Author(s):  
Romain Connan ◽  
Patrick Dabert ◽  
Marina Moya-Espinosa ◽  
Gilbert Bridoux ◽  
Fabrice Béline ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document