High nitrogen removal performance of anaerobically treated fish processing wastewater by one-stage partial nitritation and anammox process with hydroxyapatite (HAP)-based syntrophic granules and granule structure

2021 ◽  
pp. 125526
Author(s):  
Yujie Chen ◽  
Eli Hendrik Sanjaya ◽  
Guangze Guo ◽  
Yu-You Li
2007 ◽  
Vol 55 (8-9) ◽  
pp. 19-26 ◽  
Author(s):  
B. Szatkowska ◽  
G. Cema ◽  
E. Plaza ◽  
J. Trela ◽  
B. Hultman

The ability of bacterial cultures to create biofilm brings a possibility to enhance biological wastewater treatment efficiency. Moreover, the ability of Anammox and Nitrosomonas species to grow within the same biofilm layer enabled a one-stage system for nitrogen removal to be designed. Such a system, with Kaldnes rings as carriers for biofilm growth, was tested in a technical pilot plant scale (2.1 m3) at the Himmerfjärden Waste Water Treatment Plant (WWTP) in the Stockholm region. The system was directly supplied with supernatant originating from dewatering of digested sludge containing high ammonium concentrations. Nearly 1-year of operational data showed that during the partial nitritation/Anammox process, alkalinity was utilised parallel to ammonium removal. The process resulted in a small pH drop, and its relationship with conductivity was found. The nitrogen removal rate for the whole period oscillated around 1.5 g N m−2d−1 with a maximum value equal to 1.9 g N m−2d−1. Parallel to the pilot plant experiment, a series of batch tests were run to investigate the influence on removal rates of different dissolved oxygen conditions and addition of nitrite. The highest nitrogen removal rate (5.2 g N m−2d−1) in batch tests was obtained when the Anammox process was stimulated by the addition of nitrite. In the simultaneous partial nitritation and Anammox process, the partial nitritation was the rate-limiting step.


2020 ◽  
pp. 1169-1191
Author(s):  
Grzegorz Cema ◽  
Adam Sochacki

In most cases, the anammox process is used for nitrogen removal from reject water coming from dewatering of digested sludge. However, there are more industrial streams suitable for treatment by partial nitritation/anammox process. The landfill leachate may be a good example of such wastewater. Generally, landfilling is the most used solution for treatment of urban solid wastes. The problem with landfill leachate production and management is one of the most important issues associated with the sanitary landfills. These streams are highly contaminated wastewater with a complex mixture of organic and inorganic compounds and characterized by a high ammonia content and low biodegradable organic fraction matter. The objective of this chapter is the short characteristic of landfill leachate and a short review of its treatment methods with special focus on nitrogen removal by partial nitritation/anammox process.


2018 ◽  
Vol 44 ◽  
pp. 00179 ◽  
Author(s):  
Mariusz Tomaszewski ◽  
Grzegorz Cema ◽  
Tomasz Twardowski ◽  
Aleksandra Ziembińska-Buczyńska

The anaerobic ammonium oxidation (anammox) process is one of the most energy efficient and environmentally-friendly bioprocess for the treatment of the wastewater with high nitrogen concentration. The aim of this work was to study the influence of the high nitrogen loading rate (NLR) on the nitrogen removal in the laboratory-scale anammox sequencing batch reactor (SBR), during the shift from the synthetic wastewater to landfill leachate. In both cases with the increase of NLR from 0.5 to 1.1 – 1.2 kg N/m3d, the nitrogen removal rate (NRR) increases to about 1 kg N/m3d, but higher NLR caused substrates accumulation and affects anammox process efficiency. Maximum specific anammox activity was determined as 0.638 g N/g VSSd (NRR 1.023 kg N/m3d) and 0.594 g N/g VSSd (NRR 1.241 kg N/m3d) during synthetic and real wastewater treatment, respectively. Both values are similar and this is probably the nitrogen removal capacity of the used anammox biomass. This indicates, that landfill leachate did not influence the nitrogen removal capacity of the anammox process.


2013 ◽  
Vol 67 (5) ◽  
pp. 968-975 ◽  
Author(s):  
C. G. Casagrande ◽  
A. Kunz ◽  
M. C. De Prá ◽  
C. R. Bressan ◽  
H. M. Soares

The anaerobic ammonium oxidation (ANAMMOX) is a chemolithoautotrophic process, which converts NH4+ to N2 using nitrite (NO2−) as the electron acceptor. This process has very high nitrogen removal rates (NRRs) and is an alternative to classical nitrification/denitrification wastewater treatment. In the present work, a strategy for nitrogen removal using ANAMMOX process was tested evaluating their performance when submitted to high loading rates and very short hydraulic retention times (HRTs). An up-flow ANAMMOX column reactor was inoculated with 30% biomass (v v−1) fed from 100 to 200 mg L−1 of total N (NO2−-N + NH4+-N) at 35 °C. After start-up and process stability the maximum NRR in the up-flow anaerobic sludge blanket (UASB) reactor was 18.3 g-N L−1 d−1 operated at 0.2 h of HRT. FISH (fluorescence in situ hybridization) analysis and process stoichiometry confirmed that ANAMMOX was the prevalent process for nitrogen removal during the experiments. The results point out that high NRRs can be obtained at very short HRTs using up-flow ANAMMOX column reactor configuration.


Sign in / Sign up

Export Citation Format

Share Document