process operation
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 66)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Vol 25 (6) ◽  
pp. 773-781
Author(s):  
D. S. Aleshin ◽  
A. G. Krasheninin ◽  
P. V. Zaitseva ◽  
I. N. Tanutrov

This work aims to determine the conditions for the CaMoO4, CaSO4, Ca(ReO4)2 formation during oxidation of MoS2 and ReS2 in the presence of Ca(ОН)2. The concentrate from the Yuzhno-Shameyskoye deposit in the Sverdlovsk region, having 37% wt. Мо and 0.005% wt. Re, was selected as a feedstock for thermodynamic modelling of sweet roasting in the presence of Ca(OH)2. To determine the optimal amount of calcium-containing additives, the thermodynamic modelling was carried out using the following mass ratios: molybdenum concentrate: Ca(OH)2 = 1:0.8, 1:1, 1:1.2 and 1:1.5 in the temperature range of 100–800°С, with a step of 100°С, system pressure of 0.1 MPa in the air (molar ratio: molybdenum concentrate + Ca(OH)2: air = 1:5). The content of all sample components in moles was entered into the HSC 6.1 software package. The main reactions associated with the sweet roasting of molybdenum concentrate in the presence of calcium hydroxide were shown. It was established that the main phases formed as a result of roasting comprise CaSO4, CaSO3, MoO3, CaMoO4, CaMoO3 and CaReO4. The effect of temperature on the formation of the main gaseous products was studied under different mass ratios of molybdenum concentrate and Ca(OH)2. It was found that up to 600°C, with molybdenum concentrate to Ca(OH)2 ratio of 1:1, the concentrations of released sulphurous anhydride are lower than the maximum permissible concentrations. The calculated thermodynamic data was used for modelling the roasting process of molybdenum concentrate with calcium hydroxide. An optimal ratio necessary for the successful process operation was established: molybdenum concentrate: Ca(OH)2 = 1:1 by weight. Thermodynamic modelling showed that, in the temperature range of 100–600°С when using Ca(OH)2, no rhenium and molybdenum loss is observed, the release of sulfur is less than 10 mg/m3.


Author(s):  
Anže Prašnikar ◽  
Blaž Likozar

To reduce CO2 emissions, a flexible process operation for chemical methanol synthesis may be required as the supply of renewable energy-based feedstocks fluctuates. Determining the changing conditions’ analysis for the...


Author(s):  
Jing Wang ◽  
Jinglin Zhou ◽  
Xiaolu Chen

AbstractOwing to the raised demands on process operation and product quality, the modern industrial process becomes more complicated when accompanied by the large number of process and quality variables produced. Therefore, quality-related fault detection and diagnosis are extremely necessary for complex industrial processes. Data-driven statistical process monitoring plays an important role in this topic for digging out the useful information from these highly correlated process and quality variables, because the quality variables are measured at a much lower frequency and usually have a significant time delay (Ding 2014; Aumi et al. 2013; Peng et al. 2015; Zhang et al. 2016; Yin et al. 2014). Monitoring the process variables related to the quality variables is significant for finding potential harm that may lead to system shutdown with possible enormous economic loss.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2184
Author(s):  
Simeng Li ◽  
Han Li ◽  
Yanmei Yu ◽  
Jian Chen

N-(2-Hydroxyethyl) piperazine (HEPZ) has a chemical structure similar to PZ and has less volatility. It is not easy to volatilize in a continuous operation device. It is studied to replace PZ as a promotor to increase the CO2 capture rate. This paper researches the lowest energy consumption and absorbent loss of HEPZ/H2O in the absorption-regeneration process, and compares it with another five amines, including PZ, MEA, 1-MPZ, AMP and DMEA. Based on the thermodynamic model, this work establishes a process simulation based on the equilibrium stage, assuming that all stages of the absorption and desorption towers reach thermodynamic equilibrium and CO2 recovery in the absorption tower is 90%. By optimizing the process parameters, the lowest thermodynamic energy consumption and absorbent loss of process operation are obtained. Our results show that HEPZ as a promotor to replace PZ and MEA has significant economic value. The lowest reboiler energy consumption of HEPZ with the optimal process parameters is 3.018 GJ/tCO2, which is about 35.2% lower than that of PZ and about 11.6% lower than that of MEA, and HEPZ has the lowest solvent loss. The cyclic capacity is 64.7% higher than PZ and 21.6% lower than primary amine MEA.


Author(s):  
M. C. Collivignarelli ◽  
M. Carnevale Miino ◽  
S. Bellazzi ◽  
F. M. Caccamo ◽  
A. Durante ◽  
...  

Abstract The process operation of wastewater treatment plants (WWTPs) is based on the proper set up of several physical, chemical and biological parameters. Often, issues and problems arising in the process are strictly linked to the rheological behaviour of sewage sludge (SeS). Therefore, rheological measurements, which recently have captured a growing interest, represent an important aspect to consider in the design and operation of WWTPs, especially in the sludge-handling processes. The knowledge of rheological behaviour of SeS represents a crucial step to better understands its flow behaviour and therefore optimize the performance of the processes, minimizing the costs. The SeS are non-Newtonian fluids and, to date, Bingham and Ostwald models are the most applied. This work presents an overview of scientific literature about the rheological properties of SeS and discusses the importance of its knowledge for the management of WWTPs.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1521
Author(s):  
Guangyan Xu ◽  
Zailin Guan ◽  
Lei Yue ◽  
Jabir Mumtaz ◽  
Jun Liang

This paper investigates the nonidentical parallel production line scheduling problem derived from an axle housing machining workshop of an axle manufacturer. The characteristics of axle housing machining lines are analyzed, and a nonidentical parallel line scheduling model with a jumping process operation (NPPLS-JP), which considers mixed model production, machine eligibility constraints, and fuzzy due dates, is established so as to minimize the makespan and earliness/tardiness penalty cost. While the physical structures of the parallel lines in the NPPLS-JP model are symmetric, the production capacities and process capabilities are asymmetric for different models. Different from the general parallel line scheduling problem, NPPLS-JP allows for a job to transfer to another production line to complete the subsequent operations (i.e., jumping process operations), and the transfer is unidirectional. The significance of the NPPLS-JP model is that it meets the demands of multivariety mixed model production and makes full use of the capacities of parallel production lines. Aiming to solve the NPPLS-JP problem, we propose a hybrid algorithm named the multi-objective grey wolf optimizer based on decomposition (MOGWO/D). This new algorithm combines the GWO with the multi-objective evolutionary algorithm based on decomposition (MOEA/D) to balance the exploration and exploitation abilities of the original MOEA/D. Furthermore, coding and decoding rules are developed according to the features of the NPPLS-JP problem. To evaluate the effectiveness of the proposed MOGWO/D algorithm, a set of instances with different job scales, job types, and production scenarios is designed, and the results are compared with those of three other famous multi-objective optimization algorithms. The experimental results show that the proposed MOGWO/D algorithm exhibits superiority in most instances.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abhijeet Singh ◽  
Jan Moestedt ◽  
Andreas Berg ◽  
Anna Schnürer

Acetogens play a very important role in anaerobic digestion and are essential in ensuring process stability. Despite this, targeted studies of the acetogenic community in biogas processes remain limited. Some efforts have been made to identify and understand this community, but the lack of a reliable molecular analysis strategy makes the detection of acetogenic bacteria tedious. Recent studies suggest that screening of bacterial genetic material for formyltetrahydrofolate synthetase (FTHFS), a key marker enzyme in the Wood-Ljungdahl pathway, can give a strong indication of the presence of putative acetogens in biogas environments. In this study, we applied an acetogen-targeted analyses strategy developed previously by our research group for microbiological surveillance of commercial biogas plants. The surveillance comprised high-throughput sequencing of FTHFS gene amplicons and unsupervised data analysis with the AcetoScan pipeline. The results showed differences in the acetogenic community structure related to feed substrate and operating parameters. They also indicated that our surveillance method can be helpful in the detection of community changes before observed changes in physico-chemical profiles, and that frequent high-throughput surveillance can assist in management towards stable process operation, thus improving the economic viability of biogas plants. To our knowledge, this is the first study to apply a high-throughput microbiological surveillance approach to visualise the potential acetogenic population in commercial biogas digesters.


2021 ◽  
Vol 211 ◽  
pp. 107607
Author(s):  
Esmaeil Zarei ◽  
Faisal Khan ◽  
Rouzbeh Abbassi

AIChE Journal ◽  
2021 ◽  
Author(s):  
Thomas R. Savage ◽  
Fernando Almeida‐Trasvina ◽  
Ehecatl A. del‐Rio Chanona ◽  
Robin Smith ◽  
Dondga Zhang

Sign in / Sign up

Export Citation Format

Share Document