Anaerobic co-digestion of organic fractions of municipal solid waste: Synergy study of methane production and microbial community

2021 ◽  
Vol 151 ◽  
pp. 106137
Author(s):  
Yiran Zhou ◽  
Kangyi Huang ◽  
Xiuyao Jiao ◽  
Nemanja Stanisavljevic ◽  
Lei Li ◽  
...  
Author(s):  
Mario F. Castellón-Zelaya ◽  
Simón González-Martínez

Abstract The silage of the organic fraction of municipal solid waste (OFMSW) is a common practice in biogas plants. During silage, fermentation processes take place, affecting the later methanisation stage. There are no studies about how OFMSW silage affects methane production. This work aimed to determine the effects of silage (anaerobic acid fermentation) at different solids concentrations and temperatures on methane production. OFMSW was ensiled at 20, 35, and 55 °C with total solids (TS) concentrations of 10, 20, and 28% for 15 days. The ensiled OFMSW was then tested for methane production at the substrate to inoculum ratios (S/I) of 0.5, 1.0, and 1.5. Independently of the temperature, the production of the metabolites during silage increases with decreasing solids concentration. The highest metabolites production were lactic acid, ethanol, and acetic acid, representing together 95% of the total. Methane production from ensiled OFMSW at 10% solids concentration shows, under every tested condition, better methane production than from fresh OFMSW. Ensiled OFMSW produces more methane than fresh OFMSW, and methane production was highest at 35 °C.


Author(s):  
V. Mozhiarasi ◽  
P. M. Benish Rose ◽  
S. M. Elavaar Kuzhali ◽  
S. Kanyapushpanjali ◽  
D. Weichgrebe ◽  
...  

2019 ◽  
Vol 242 ◽  
pp. 153-161 ◽  
Author(s):  
Xinyu Zhao ◽  
Beidou Xi ◽  
Xiaosong He ◽  
Dan Li ◽  
Wenbing Tan ◽  
...  

2008 ◽  
Vol 58 (9) ◽  
pp. 1757-1763 ◽  
Author(s):  
J. Guendouz ◽  
P. Buffière ◽  
J. Cacho ◽  
M. Carrère ◽  
J.-P. Delgenes

Two experiments were undertaken in three different experimental set-ups in order to compare them: an industrial 21-m3 pilot reactor, a new 40-ℓ laboratory pilot reactor and bmp type plasma bottles. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions with the same feedstock in all vessels. Biogas and methane production at the end of the tests were similar (around 200 m3 CH4STP/tVS) for both pilot reactors and were different from the bottle tests. The dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in the larger one. Adaptation of microorganisms to the waste and operating conditions was also pointed out along the consecutive batches. Thermophilic semi-continuous tests were performed in both reactors with similar conditions. The methane production efficiencies were similar.


Sign in / Sign up

Export Citation Format

Share Document