S36. Reappraisal of Personal Criticism in Social Anxiety Disorder: A Brain Network Perspective

2018 ◽  
Vol 83 (9) ◽  
pp. S360-S361
Author(s):  
Yael Jacob ◽  
Ofir Shany ◽  
Philippe Goldin ◽  
James Gross ◽  
Talma Hendler
2009 ◽  
Vol 23 (3) ◽  
pp. 242-257 ◽  
Author(s):  
Philippe Goldin ◽  
Wiveka Ramel ◽  
James Gross

This study examined the effects of mindfulness-based stress reduction (MBSR) on the brain–behavior mechanisms of self-referential processing in patients with social anxiety disorder (SAD). Sixteen patients underwent functional magnetic resonance imaging while encoding self-referential, valence, and orthographic features of social trait adjectives. Post-MBSR, 14 patients completed neuroimaging. Compared to baseline, MBSR completers showed (a) increased self-esteem and decreased anxiety, (b) increased positive and decreased negative self-endorsement, (c) increased activity in a brain network related to attention regulation, and (d) reduced activity in brain systems implicated in conceptual-linguistic self-view. MBSR-related changes in maladaptive or distorted social self-view in adults diagnosed with SAD may be related to modulation of conceptual self-processing and attention regulation. Self-referential processing may serve as a functional biobehavioral target to measure the effects of mindfulness training.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4098
Author(s):  
Abdulhakim Al-Ezzi ◽  
Nidal Kamel ◽  
Ibrahima Faye ◽  
Esther Gunaseli

Recent brain imaging findings by using different methods (e.g., fMRI and PET) have suggested that social anxiety disorder (SAD) is correlated with alterations in regional or network-level brain function. However, due to many limitations associated with these methods, such as poor temporal resolution and limited number of samples per second, neuroscientists could not quantify the fast dynamic connectivity of causal information networks in SAD. In this study, SAD-related changes in brain connections within the default mode network (DMN) were investigated using eight electroencephalographic (EEG) regions of interest. Partial directed coherence (PDC) was used to assess the causal influences of DMN regions on each other and indicate the changes in the DMN effective network related to SAD severity. The DMN is a large-scale brain network basically composed of the mesial prefrontal cortex (mPFC), posterior cingulate cortex (PCC)/precuneus, and lateral parietal cortex (LPC). The EEG data were collected from 88 subjects (22 control, 22 mild, 22 moderate, 22 severe) and used to estimate the effective connectivity between DMN regions at different frequency bands: delta (1–3 Hz), theta (4–8 Hz), alpha (8–12 Hz), low beta (13–21 Hz), and high beta (22–30 Hz). Among the healthy control (HC) and the three considered levels of severity of SAD, the results indicated a higher level of causal interactions for the mild and moderate SAD groups than for the severe and HC groups. Between the control and the severe SAD groups, the results indicated a higher level of causal connections for the control throughout all the DMN regions. We found significant increases in the mean PDC in the delta (p = 0.009) and alpha (p = 0.001) bands between the SAD groups. Among the DMN regions, the precuneus exhibited a higher level of causal influence than other regions. Therefore, it was suggested to be a major source hub that contributes to the mental exploration and emotional content of SAD. In contrast to the severe group, HC exhibited higher resting-state connectivity at the mPFC, providing evidence for mPFC dysfunction in the severe SAD group. Furthermore, the total Social Interaction Anxiety Scale (SIAS) was positively correlated with the mean values of the PDC of the severe SAD group, r (22) = 0.576, p = 0.006 and negatively correlated with those of the HC group, r (22) = −0.689, p = 0.001. The reported results may facilitate greater comprehension of the underlying potential SAD neural biomarkers and can be used to characterize possible targets for further medication.


2018 ◽  
Vol 29 (7) ◽  
pp. 3154-3167 ◽  
Author(s):  
Y Jacob ◽  
O Shany ◽  
P R Goldin ◽  
J J Gross ◽  
T Hendler

Abstract Emotion regulation is thought to involve communication between and within large-scale brain networks that underlie emotion reactivity and cognitive control. Aberrant network interaction might therefore be a key neural feature of mental disorders that involve emotion dysregulation. Here we tested whether connectivity hierarchies within and between emotion reactivity and cognitive reappraisal networks distinguishes social anxiety disorder (SAD) patients (n = 70) from healthy controls (HC) (n = 25). To investigate network organization, we implemented a graph-theory method called Dependency Network Analysis. Participants underwent fMRI while watching or reappraising video clips involving interpersonal verbal criticism. During reappraisal, the reappraisal network exerted less influence on the reactivity network in SAD participants. Specifically, the influence of the right inferior frontal gyrus on both reappraisal and reactivity networks was significantly reduced in SAD compared with HC, and correlated negatively with negative emotion ratings among SAD participants. Surprisingly, the amygdala exhibited reduced influence on the reappraisal network in SAD relative to HC. Yet, during the watch condition, the left amygdala’s influence on the reactivity network increased with greater social anxiety symptoms among SAD participants. These findings refine our understanding of network organization that contributes to efficient reappraisal or to disturbances in applying this strategy in SAD.


2019 ◽  
Vol 128 (3) ◽  
pp. 228-233 ◽  
Author(s):  
Brianne L. Glazier ◽  
Lynn E. Alden

Sign in / Sign up

Export Citation Format

Share Document