network organization
Recently Published Documents


TOTAL DOCUMENTS

491
(FIVE YEARS 139)

H-INDEX

44
(FIVE YEARS 7)

2021 ◽  
pp. 38-40
Author(s):  
Andrey Bokov

The history of cultural space is viewed as a history of constant and necessary modernization of infrastructure. The main feature of infrastructure is the network organization and the constructive role of hub-nodes and connections and their bent for rationalization and transnational trends. The power, directions and goals of infrastructure determine the development of cities. Modern strategies for general social development imply the emergence of efficient communication corridors, highway networks and hubs located along the perimeter of the country, determining the country’s gravitation toward global connections and interactions. The development of quality infrastructure is a contribution to the future and an area of the authorities’ responsibility.


2021 ◽  
Vol 1 (3) ◽  
pp. 201-210
Author(s):  
Michael Keegan ◽  
Hava T. Siegelmann ◽  
Edward A. Rietman ◽  
Giannoula Lakka Klement ◽  
Jack A. Tuszynski

Modern network science has been used to reveal new and often fundamental aspects of brain network organization in physiological as well as pathological conditions. As a consequence, these discoveries, which relate to network hierarchy, hubs and network interactions, have begun to change the paradigms of neurodegenerative disorders. In this paper, we explore the use of thermodynamics for protein–protein network interactions in Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), traumatic brain injury and epilepsy. To assess the validity of using network interactions in neurological diseases, we investigated the relationship between network thermodynamics and molecular systems biology for these neurological disorders. In order to uncover whether there was a correlation between network organization and biological outcomes, we used publicly available RNA transcription data from individual patients with these neurological conditions, and correlated these molecular profiles with their respective individual disability scores. We found a linear correlation (Pearson correlation of −0.828) between disease disability (a clinically validated measurement of a person’s functional status) and Gibbs free energy (a thermodynamic measure of protein–protein interactions). In other words, we found an inverse relationship between disease disability and thermodynamic energy. Because a larger degree of disability correlated with a larger negative drop in Gibbs free energy in a linear disability-dependent fashion, it could be presumed that the progression of neuropathology such as is seen in Alzheimer’s disease could potentially be prevented by therapeutically correcting the changes in Gibbs free energy.


2021 ◽  
Author(s):  
Reinhard Windoffer ◽  
Nicole Schwarz ◽  
Sungjun Yoon ◽  
Teodora Piskova ◽  
Michael Scholkemper ◽  
...  

Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in epithelial cells both in vitro and in vivo. Numerical models are derived from super resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.


NeuroImage ◽  
2021 ◽  
pp. 118866
Author(s):  
Ezequiel Gleichgerrcht ◽  
Simon S. Keller ◽  
Lorna Bryant ◽  
Hunter Moss ◽  
Tanja S. Kellermann ◽  
...  

Author(s):  
Micaela Y. Chan ◽  
Liang Han ◽  
Claudia A. Carreno ◽  
Ziwei Zhang ◽  
Rebekah M. Rodriguez ◽  
...  

AbstractOlder adults with lower education are at greater risk for dementia. It is unclear which brain changes lead to these outcomes. Longitudinal imaging-based measures of brain structure and function were examined in adult individuals (baseline age, 45–86 years; two to five visits per participant over 1–9 years). College degree completion differentiates individual-based and neighborhood-based measures of socioeconomic status and disadvantage. Older adults (~65 years and over) without a college degree exhibit a pattern of declining large-scale functional brain network organization (resting-state system segregation) that is less evident in their college-educated peers. Declining brain system segregation predicts impending changes in dementia severity, measured up to 10 years past the last scan date. The prognostic value of brain network change is independent of Alzheimer’s disease (AD)-related genetic risk (APOE status), the presence of AD-associated pathology (cerebrospinal fluid phosphorylated tau, cortical amyloid) and cortical thinning. These results demonstrate that the trajectory of an individual’s brain network organization varies in relation to their educational attainment and, more broadly, is a unique indicator of individual brain health during older age.


Sign in / Sign up

Export Citation Format

Share Document