Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH

2006 ◽  
Vol 97 (3) ◽  
pp. 459-468 ◽  
Author(s):  
Dong-Jin Kim ◽  
Dong-Ig Lee ◽  
Jürg Keller
2013 ◽  
Vol 68 (9) ◽  
pp. 2035-2041 ◽  
Author(s):  
H. W. Sun ◽  
Y. Bai ◽  
Y. Z. Peng ◽  
H. G. Xie ◽  
X. N. Shi

In this study, a biological system consisting of an up-flow anaerobic sludge blanket (UASB) and anoxic–oxic (A/O) reactor was established for the advanced treatment of high ammonium urban landfill leachate. The inhibitory effect of free ammonia (FA) and free nitrous acid (FNA) on the nitrifying bacterial activity was used to achieve stable nitritation in the A/O reactor. The results demonstrated that the biological system achieved chemical oxygen demand (COD), total nitrogen (TN) and NH4+-N removal efficiencies of 95.3, 84.6 and 99.2%, respectively at a low carbon-to-nitrogen ratio of 3:1. Simultaneous denitritation and methanogenesis in the UASB could improve the removal of COD and TN. Nitritation with above 90% nitrite accumulation was successfully achieved in the A/O reactor by synergetic inhibition of FA and FNA on the activity of nitrite oxidizing bacteria (NOB). Fluorescence in situ hybridization (FISH) analysis showed that ammonia oxidizing bacteria (AOB) was dominant and was considered to be responsible for the satisfactory nitritation performance.


1996 ◽  
Vol 34 (3-4) ◽  
pp. 371-378 ◽  
Author(s):  
F. Fdz-Polanco ◽  
S. Villaverde ◽  
P. A. Garcia

The combined effect of temperature, pH and ammonium concentration over the nitrite accumulation phenomena in situations of free ammonia inhibition, their effect over the ammonia and nitrite oxidizer microorganiisms influence over the nitrification, have been studied in an Up-flow Biological Aerated Filter (UBAF). The free ammonia inhibition effect highly depends on the values of pH, temperature and ammonium concentration. For the same specific free ammonia concentration different values of temperature, pH and ammonium concentration bring about different nitrite accumulations. In conditions of no free ammonia inhibition and low values of temperature and pH, high ammonium concentrations bring about a higher relative activity of ammonia oxidizer microorganisms of the filter increases the nitratation efficiency in zones close to the outlet and will favour the nitrite accumulation in situations of free ammonia inhibition.


2007 ◽  
Vol 55 (10) ◽  
pp. 11-19 ◽  
Author(s):  
F. Béline ◽  
H. Boursier ◽  
F. Guiziou ◽  
E. Paul

During this study, a mathematical model simulating piggery wastewater treatment was developed, with the objective of process optimisation. To achieve this, the effect of temperature and free ammonia concentration on the nitrification rate were experimentally studied using respirometry. The maximum growth rates obtained were higher for ammonium-oxidising biomass than for nitrite-oxidising biomass for the temperatures above 20 °C; values at 35 °C were equal to 1.9 and 1.35 day−1, respectively. No inhibition of nitrification was observed for free ammonia concentrations up to 50 mgN/L. Using these data with others experimental data obtained from a pilot-scale reactor to treat piggery wastewater, a model based on a modified version of the ASM1 was developed and calibrated. In order to model the nitrite accumulation observed, the ASM1 model was extended with a two-step nitrification and denitrification including nitrite as intermediate. Finally, the produced model called PiWaT1 demonstrated a good fit with the experimental data. In addition to the temperature, oxygen concentration was identified as an important factor influencing the nitrite accumulation during nitrification. Even if some improvements of the model are still necessary, this model can already be used for process improvement.


Polar Biology ◽  
2018 ◽  
Vol 41 (9) ◽  
pp. 1763-1775 ◽  
Author(s):  
C. W. Chong ◽  
S. Silvaraj ◽  
Y. Supramaniam ◽  
I. Snape ◽  
I. K. P. Tan

Chemosphere ◽  
2014 ◽  
Vol 97 ◽  
pp. 10-15 ◽  
Author(s):  
Carmen Fajardo ◽  
Mabel Mora ◽  
Isaac Fernández ◽  
Anuska Mosquera-Corral ◽  
José Luis Campos ◽  
...  

2013 ◽  
Vol 781-784 ◽  
pp. 2095-2099
Author(s):  
Hong Wei Sun ◽  
Yong Jun You ◽  
Ying Guo

Biological system consisting of an up-flow anaerobic sludge blanket (UASB) and anoxic-oxic (A/O) reactor was applied to treat high ammonium content urban landfill leachate. Inhibitory effect of free ammonia (FA) and free nitrous acid (FNA) on nitrifying bacteria activity was used to achieve nitrogen removal via nitrite pathway in the A/O. Results demonstrated that removed efficiencies of COD, total nitrogen (TN) and NH4+-N were 95.3%, 84.6 %and 99.2%, respectively. Stable nitrite pathway with above 90% nitrite accumulation was successfully achieved in the A/O reactor by synergetic inhibition of FA and FNA on the activity of nitrite oxidizing bacteria (NOB). Moreover, Fluorescence in situ hybridization (FISH) analysis showed that AOB was dominant microorganism.


2009 ◽  
Vol 17 (6) ◽  
pp. 1027-1031 ◽  
Author(s):  
Hongwei SUN ◽  
Qing YANG ◽  
Yongzhen PENG ◽  
Xiaoning SHI ◽  
Shuying WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document