Outer membrane compositions enhance the rate of extracellular electron transport via cell-surface MtrC protein in Shewanella oneidensis MR-1

2021 ◽  
Vol 320 ◽  
pp. 124290 ◽  
Author(s):  
Xizi Long ◽  
Akihiro Okamoto
2019 ◽  
Author(s):  
Yoshihide Tokunou ◽  
Keisuke Saito ◽  
Ryo Hasegawa ◽  
Kenneth H. Nealson ◽  
Kazuhito Hashimoto ◽  
...  

AbstractExtracellular electron transport (EET) occurs in environmental iron-reducing bacteria and is mediated by an outer membrane multi-heme cytochrome complex (Cyts). It has critical implications for global mineral cycling and electrochemical microbial catalysis. The rate of EET mediated by multiple heme redox centers significantly increases in the presence of flavins and quinones. Their electron free energy does not entirely account for the fact that differential effects on EET rate enhancement vary significantly by factors ≥100. Here, we report on whole-cell electrochemical analysis ofShewanella oneidensisMR-1 using six flavin analogs and four quinones. We demonstrated that protonation of the nitrogen atom at position 5 (N5) of the isoalloxazine ring is essential for electron outflow acceleration as a bound non-covalent cofactor of Cyts. EET mediated by Cyts was accelerated at a rate dependent on pKa(N5). The EET rate largely decreased in response to the addition of deuterated water (D2O), while low concentration of D2O (4 %) had little impact on electron free energy difference of the heme and non-covalent bound cofactors, strongly suggesting that the protonation of N5 limits the rate of EET. Our findings directly link EET kinetics to proton transport reaction via N5 and provide a basis for the development of novel strategies for controlling EET-associated biological reactions.Significance statementThe potential of various small molecules such as flavins and quinones to enhance the rate of extracellular electron transport (EET) has been exploited to develop environmental energy conversion systems. Flavins and quinones have similar molecular structures but their abilities to enhance EET vary by >100× inShewanella oneidensisMR-1. These large differences are inconsistent with conventional models, which rely on redox potentials or diffusion constant of shuttling electron mediators. In this study, we demonstrated that the basicity of the nitrogen atom of the isoalloxazine ring (N5) enhances the rate of electron outflow when a flavin or quinone is a non-covalent cofactor ofS. oneidensisMR-1 outer membranec-type cytochromes.


2015 ◽  
Vol 108 (2) ◽  
pp. 368a ◽  
Author(s):  
Sahand Pirbadian ◽  
Sarah E. Barchinger ◽  
Kar Man Leung ◽  
Hye Suk Byun ◽  
Yamini Jangir ◽  
...  

2019 ◽  
Author(s):  
Suryakant Mishra ◽  
Sahand Pirbadian ◽  
Amit Kumar Mondal ◽  
Moh El-Naggar ◽  
Ron Naaman

Multiheme cytochromes, located on the bacterial cell surface, function as long-distance (> 10 nm) electron conduits linking intracellular reactions to external surfaces. This extracellular electron transfer process, which allows microorganisms to gain energy by respiring solid redox-active minerals, also facilitates the wiring of cells to electrodes. While recent studies suggested that a chiral induced spin selectivity effect is linked to efficient electron transmission through biomolecules, this phenomenon has not been investigated in the extracellular electron conduits. Using magnetic conductive probe atomic force microscopy, Hall voltage measurements, and spin-dependent electrochemistry of the decaheme cytochromes MtrF and OmcA from the metal-reducing bacterium <i>Shewanella oneidensis</i> MR-1, we show that electron transport through these extracellular conduits is spin-selective. Our study has implications for understanding how spin-dependent interactions and magnetic fields may control electron transport across biotic-abiotic interfaces in both natural and biotechnological systems.


2020 ◽  
Vol 86 (23) ◽  
Author(s):  
Xinxin Jing ◽  
Yichao Wu ◽  
Liang Shi ◽  
Caroline L. Peacock ◽  
Noha Mohamed Ashry ◽  
...  

ABSTRACT The outer membrane c-type cytochromes (c-Cyts) OmcA and MtrC in Shewanella are key terminal reductases that bind and transfer electrons directly to iron (hydr)oxides. Although the amounts of OmcA and MtrC at the cell surface and their molecular structures are largely comparable, MtrC is known to play a more important role in dissimilatory iron reduction. To explore the roles of these outer membrane c-Cyts in the interaction of Shewanella oneidensis MR-1 with iron oxides, the processes of attachment of S. oneidensis MR-1 wild type and c-type cytochrome-deficient mutants (the ΔomcA, ΔmtrC, and ΔomcA ΔmtrC mutants) to goethite are compared via quartz crystal microbalance with dissipation monitoring (QCM-D). Strains with OmcA exhibit a rapid initial attachment. The quantitative model for QCM-D responses reveals that MtrC enhances the contact area and contact elasticity of cells with goethite by more than one and two times, respectively. In situ attenuated total reflectance Fourier transform infrared two-dimensional correlation spectroscopic (ATR-FTIR 2D-CoS) analysis shows that MtrC promotes the initial interfacial reaction via an inner-sphere coordination. Atomic force microscopy (AFM) analysis demonstrates that OmcA enhances the attractive force between cells and goethite by about 60%. As a result, OmcA contributes to a higher attractive force with goethite and induces a rapid short-term attachment, while MtrC is more important in the longer-term interaction through an enhanced contact area, which promotes interfacial reactions. These results reveal that c-Cyts OmcA and MtrC adopt different mechanisms for enhancing the attachment of S. oneidensis MR-1 cells to goethite. It improves our understanding of the function of outer membrane c-Cyts and the influence of cell surface macromolecules in cell-mineral interactions. IMPORTANCE Shewanella species are one group of versatile and widespread dissimilatory iron-reducing bacteria, which are capable of respiring insoluble iron minerals via six multiheme c-type cytochromes. Outer membrane c-type cytochromes (c-Cyts) OmcA and MtrC are the terminal reductases in this pathway and have comparable protein structures. In this study, we elucidate the different roles of OmcA and MtrC in the interaction of S. oneidensis MR-1 with goethite at the whole-cell level. OmcA confers enhanced affinity toward goethite and results in rapid attachment. Meanwhile, MtrC significantly increases the contact area of bacterial cells with goethite and promotes the interfacial reaction, which may explain its central role in extracellular electron transfer. This study provides novel insights into the role of bacterial surface macromolecules in the interfacial interaction of bacteria with minerals, which is critical to the development of a comprehensive understanding of cell-mineral interactions.


2019 ◽  
Author(s):  
Suryakant Mishra ◽  
Sahand Pirbadian ◽  
Amit Kumar Mondal ◽  
Moh El-Naggar ◽  
Ron Naaman

Multiheme cytochromes, located on the bacterial cell surface, function as long-distance (> 10 nm) electron conduits linking intracellular reactions to external surfaces. This extracellular electron transfer process, which allows microorganisms to gain energy by respiring solid redox-active minerals, also facilitates the wiring of cells to electrodes. While recent studies suggested that a chiral induced spin selectivity effect is linked to efficient electron transmission through biomolecules, this phenomenon has not been investigated in the extracellular electron conduits. Using magnetic conductive probe atomic force microscopy, Hall voltage measurements, and spin-dependent electrochemistry of the decaheme cytochromes MtrF and OmcA from the metal-reducing bacterium <i>Shewanella oneidensis</i> MR-1, we show that electron transport through these extracellular conduits is spin-selective. Our study has implications for understanding how spin-dependent interactions and magnetic fields may control electron transport across biotic-abiotic interfaces in both natural and biotechnological systems.


2012 ◽  
Vol 79 (4) ◽  
pp. 1150-1159 ◽  
Author(s):  
M. Schicklberger ◽  
G. Sturm ◽  
J. Gescher

ABSTRACTMicrobial dissimilatory iron reduction is an important biogeochemical process. It is physiologically challenging because iron occurs in soils and sediments in the form of insoluble minerals such as hematite or ferrihydrite.Shewanella oneidensisMR-1 evolved an extended respiratory chain to the cell surface to reduce iron minerals. Interestingly, the organism evolved a similar strategy for reduction of dimethyl sulfoxide (DMSO), which is reduced at the cell surface as well. It has already been established that electron transfer through the outer membrane is accomplished via a complex in which β-barrel proteins enable interprotein electron transfer between periplasmic oxidoreductases and cell surface-localized terminal reductases. MtrB is the β-barrel protein that is necessary for dissimilatory iron reduction. It forms a complex together with the periplasmic decahemec-type cytochrome MtrA and the outer membrane decahemec-type cytochrome MtrC. Consequently,mtrBdeletion mutants are unable to reduce ferric iron. The data presented here show that this inability can be overcome by a mobile genomic element with the ability to activate the expression of downstream genes and which is inserted within the SO4362 gene of the SO4362-to-SO4357 gene cluster. This cluster carries genes similar tomtrAandmtrBand encoding a putative cell surface DMSO reductase. Expression of SO4359 and SO4360 alone was sufficient to complement not only anmtrBmutant under ferric citrate-reducing conditions but also a mutant that furthermore lacks any outer membrane cytochromes. Hence, the putative complex formed by the SO4359 and SO4360 gene products is capable not only of membrane-spanning electron transfer but also of reducing extracellular electron acceptors.


Sign in / Sign up

Export Citation Format

Share Document