Unveiling organic loading shock-resistant mechanism in a pilot-scale moving bed biofilm reactor-assisted dual-anaerobic-anoxic/oxic system for effective municipal wastewater treatment

2021 ◽  
pp. 126339
Author(s):  
Jia Li ◽  
Lei Zheng ◽  
Changbing Ye ◽  
Zhiming Zhou ◽  
Baosen Ni ◽  
...  
2013 ◽  
Vol 69 (5) ◽  
pp. 1021-1027 ◽  
Author(s):  
W. Yang ◽  
W. Syed ◽  
H. Zhou

This study compared the performance between membrane-coupled moving bed biofilm reactor (M-MBBR) and a conventional membrane bioreactor (MBR) in parallel. Extensive tests were conducted in three pilot-scale experimental units over 6 months. Emphasis was placed on the factors that would affect the performance of membrane filtration. The results showed that the concentrations of soluble microbial product (SMP), colloidal total organic carbon and transparent exopolymer particles in the M-MBBR systems were not significantly different from those in the control MBR system. However, the fouling rates were much higher in the M-MBBR systems as compared to the conventional MBR systems. This indicates membrane fouling potential was related not only to the concentration of SMP, but also to their sources and characteristics. The addition of polyaluminum chloride could reduce the fouling rate of the moving bed biofilm reactor unit by 56.4–84.5% at various membrane fluxes.


2006 ◽  
Vol 54 (9) ◽  
pp. 181-189 ◽  
Author(s):  
D.H. Shin ◽  
W.S. Shin ◽  
Y.-H. Kim ◽  
Myung Ho Han ◽  
S.J. Choi

A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2.In the MBBR process, 85% of COD and 70% of color (influent COD=807.5 mg/L and color=3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT=44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.


2017 ◽  
Vol 77 (3) ◽  
pp. 714-720 ◽  
Author(s):  
J. C. Leyva-Díaz ◽  
A. Rodríguez-Sánchez ◽  
J. González-López ◽  
J. M. Poyatos

Abstract A membrane bioreactor (MBR) and a hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) for municipal wastewater treatment were studied to determine the effect of salinity on nitrogen removal and autotrophic kinetics. The biological systems were analyzed during the start-up phase with a hydraulic retention time (HRT) of 6 h, total biomass concentration of 2,500 mg L−1 in the steady state, and electric conductivities of 1.05 mS cm−1 for MBR and hybrid MBBR-MBR working under regular salinity and conductivity variations of 1.2–6.5 mS cm−1 for MBR and hybrid MBBR-MBR operating at variable salinity. The variable salinity affected the autotrophic biomass, which caused a reduction of the nitrogen degradation rate, an increase of time to remove ammonium from municipal wastewater and longer duration of the start-up phase for the MBR and hybrid MBBR-MBR.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Thi Ha Nguyen ◽  
Manh Khai Nguyen ◽  
Thi Hoang Oanh Le ◽  
Thanh Tu Bui ◽  
Trong Hieu Nguyen ◽  
...  

In this research, the kinetics of COD biodegradation and biogas production in a moving bed biofilm reactor (MBBR) at pilot scale (10 m3) for piggery wastewater treatment were investigated. Polyethylene (PE) was used as a carrying material, with organic loading rates (OLRs) of 10, 15, and 18 kgCOD/m3 day in accordance to hydraulic retention times (HRTs) of 0.56, 0.37, and 0.3 day. The results showed that a high COD removal efficiency was obtained in the range of 68–78% with the influent COD of 5.2–5.8 g/L at all 3 HRTs. About COD degradation kinetics, in comparison to the first- and second-order kinetics and the Monod model, Stover–Kincannon model showed the best fit with R2 0.98 and a saturation value constant (KB) and a maximum utilization rate (Umax) of 52.40 g/L day and 82.65 g/L day, respectively. The first- and second-order kinetics with all 3 HRTs and Monod model with the HRT of 0.56 day also obtained high R2 values. Therefore, these kinetics and models can be further considered to be used for predicting the kinetic characteristics of the MBBR system in piggery wastewater treatment process. The result of a 6-month operation of the MBBR was that biogas production was mostly in the operating period of days 17 to 80, around 0.2 to 0.3 and 0.15–0.20 L/gCODconverted, respectively, and then reduction at an OLR of 18 kgCOD/m3. After the start-up stage, day 35 biogas cumulative volume fluctuated from 20 to 30 m3/day and reached approximately 3500 m3 for 178 days during the whole digestive process. Methane is accounted for about 65–70% of biogas with concentration around 400 mg/L.


2020 ◽  
Vol 6 ◽  
pp. 340-344
Author(s):  
Andreia D. Santos ◽  
Rui C. Martins ◽  
Rosa M. Quinta-Ferreira ◽  
Luis M. Castro

Sign in / Sign up

Export Citation Format

Share Document