Feedforward control for nitrogen removal in a pilot-scale anaerobic-anoxic-oxic plant for municipal wastewater treatment

2010 ◽  
Vol 5 (1) ◽  
pp. 130-139 ◽  
Author(s):  
Tonggang Shen ◽  
Hanchang Shi ◽  
Huiming Shi ◽  
He Jing ◽  
Huilei Xiong
2011 ◽  
Vol 64 (8) ◽  
pp. 1730-1735 ◽  
Author(s):  
G. Guglielmi ◽  
G. Andreottola

A large pilot-scale membrane bioreactor (MBR) with a conventional denitrification/nitrification scheme for municipal wastewater treatment has been run for one year under two different aeration strategies in the oxidation/nitrification compartment. During the first five months air supply was provided according to the dissolved-oxygen set-point and the system run as a conventional pre-denitrification MBR; then, an intermittent aeration strategy based on effluent ammonia nitrogen was adopted in the aerobic compartment in order to assess the impact on process performances in terms of N and P removal, energy consumption and sludge reduction. The experimental inferences show a significant improvement of the effluent quality as COD and total nitrogen, both due to a better utilization of the denitrification potential which is a function of the available electron donor (biodegradable COD) and electron acceptor (nitric nitrogen); particularly, nitrogen removal increased from 67% to 75%. At the same time, a more effective biological phosphorus removal was observed as a consequence of better selection of denitrifying phosphorus accumulating organisms (dPAO). The longer duration of anoxic phases also reflected in a lower excess sludge production (12% decrease) compared with the standard pre-denitrification operation and in a decrease of energy consumption for oxygen supply (about 50%).


2003 ◽  
Vol 48 (5) ◽  
pp. 257-266 ◽  
Author(s):  
K. Boonsong ◽  
S. Piyatiratitivorakul ◽  
P. Patanaponpaiboon

The study evaluated the possibility of using mangrove plantation to treat municipal wastewater. Two types of pilot scale (100 × 150 m2) free water surface constructed wetland were set up. One system was a natural Avicennia marina dominated forest system. The other system was a newly planted system in which seedlings of Rhizophora spp., A. marina, Bruguiera cylindrica and Ceriops tagal were planted in 4 strips. Municipal wastewater was retained within the systems for 7 and 3 days, respectively. The results indicated that the average removal percentage of TSS, BOD, NO3-N, NH4-N, TN, PO4-P and TP in the newly planted system were 27.6-77.1, 43.9-53.9, 37.6-47.5, 81.1-85.9, 44.8-54.4, 24.7-76.8 and 22.6-65.3, respectively. Whereas the removal percentage of those parameters in the natural forest system were 17.1-65.9, 49.5-51.1, 44.0-60.9, 51.1-83.5, 43.4-50.4, 28.7-58.9 and 28.3-48.0, respectively. Generally, the removal percentages within the newly planted system and the natural forest system were not significantly different. However, when the removal percentages were compared with detention time, TSS, PO4-P and TP percentages removed were significantly higher in the 7-day detention time treatment. Even though the removal percentages were highly varied and temporally dependent, the overall results showed that mangrove plantation could be used as constructed wetland for municipal wastewater treatment in a similar way to the natural mangrove system.


2003 ◽  
Vol 48 (1) ◽  
pp. 77-85 ◽  
Author(s):  
X.-D. Hao ◽  
M.C.M. van Loosdrecht

Water problems have to be solved in an integrated way, and sustainability has become a major issue. For this reason, developing more sustainable wastewater treatment processes is needed. New discoveries and good understanding on microbial conversions of nitrogen and phosphorus make more sustainable processes possible. New options for decentralized sustainable sanitation are generally compared to conventional sewage systems, we think that for a proper comparison also innovative centralized treatment schemes should be evaluated. In this article, a more sustainable WWTP is proposed for municipal wastewater treatment, mainly based on the principles of denitrifying dephosphatation and anaerobic ammonium oxidation (ANAMMOX). The proposed system consists of a first stage of the A/B process in which maximal sludge production is achieved. In this way, COD is regained as sludge for methanation. The following BCFS® and CANON processes can remove N and P with minimal or no COD need. As a potential fertiliser, struvite can easily be removed from the sludge water by adding magnesium compounds. A case study is done on the basis of the mass balance over the proposed plant. The effluent from the system has a good quality to be recycled. This could also make a contribution to meeting the world's water needs and lessening the impact on the world's water environment. Since all the separate units are already applied or tested on pilot-scale, no problems for technical implementation are foreseen.


Author(s):  
Klaus Doelle ◽  
Qian Wang

The study tested a designed and built pilot scale packed bio-tower system under continuous operation using pre-clarified municipal wastewater. Performance was evaluated by measuring the removal of chemical oxygen demand and nitrogen ammonia. The pilot scale packed bio-tower system had a diameter of 1209 mm (4 ft.) and a height of 3,962 mm (13 ft.) and contained Bentwood CF-1900 bacteria growth media with a surface area of 6,028.80 ft² (560.09 m²). The municipal residential sewage was fed into a 1,481 l (375 gal.) recirculation reservoir at a temperature of 15°C (59.0°F) and a flow rate between 7,571 l/d (2000 gal/d) and 90,850 l/d (24,000 gal/d) and recirculated through the bio-tower with a fixed recirculation rate of 75.7 l/min (20 gal/min). The influent COD value reduction achieved is between 63.4% and 84.8%, whereas the COD influent value varied between 87 mg/l and 140 mg/l. The influent NH3-N reduction achieved was between 99.8% and 91.8% whereas the influent NH3-N value was between 28.8 mg/l and 18.6 mg/l  at a flow rate between 7571 l/d (2000 gal/d) and 90,850 l/d (24,000 gal/d).


2004 ◽  
Vol 49 (5-6) ◽  
pp. 39-46 ◽  
Author(s):  
K.-I. Gil ◽  
E. Choi

The recycle water from sludge processing in municipal wastewater treatment plants causes many serious problems in the efficiency and stability of the mainstream process. Thus, the design approach for recycle water is an important part of any biological nutrient removal system design when a retrofit technology is required for upgrading an existing plant. Moreover, the application of nitrogen removal from recycle water using the nitritation process has recently increased due to economic reasons associated with an effective carbon allocation as well as the minimization of aeration costs. However, for the actual application of recycle water nitritation, it has not been fully examined whether or not additional volume would be required in an existing plant. In this paper, the addition of recycle water nitritation to an existing plant was evaluated based on a volume analysis and estimation of final effluent quality. It was expected that using the reserve volume of the aeration tank in existing plants, recycle water nitritation could be applied to a plant without any enlargement. With the addition of recycle water nitritation, it was estimated that the final effluent quality would be improved and stabilized, especially in the winter season.


Sign in / Sign up

Export Citation Format

Share Document