Design of small molecule inhibitors of acetyl-CoA carboxylase 1 and 2 showing reduction of hepatic malonyl-CoA levels in vivo in obese Zucker rats

2011 ◽  
Vol 19 (10) ◽  
pp. 3039-3053 ◽  
Author(s):  
Christoffer Bengtsson ◽  
Stefan Blaho ◽  
David Blomberg Saitton ◽  
Kay Brickmann ◽  
Johan Broddefalk ◽  
...  
2012 ◽  
Vol 448 (3) ◽  
pp. 409-416 ◽  
Author(s):  
Dongju Jung ◽  
Lutfi Abu-Elheiga ◽  
Rie Ayuzawa ◽  
Ziwei Gu ◽  
Takashi Shirakawa ◽  
...  

Chromeceptin is a synthetic small molecule that inhibits insulin-induced adipogenesis of 3T3-L1 cells and impairs the function of IGF2 (insulin-like growth factor 2). The molecular target of this benzochromene derivative is MFP-2 (multifunctional protein 2). The interaction between chromeceptin and MFP-2 activates STAT6 (signal transducer and activator of transcription 6), which subsequently induces IGF inhibitory genes. It was not previously known how the binding of chromeceptin with MFP-2 blocks adipogenesis and activates STAT6. The results of the present study show that the chromeceptin–MFP-2 complex binds to and inhibits ACC1 (acetyl-CoA carboxylase 1), an enzyme important for the de novo synthesis of malonyl-CoA and fatty acids. The formation of this ternary complex removes ACC1 from the cytosol and sequesters it in peroxisomes under the guidance of Pex5p (peroxisomal-targeting signal type 1 receptor). As a result, chromeceptin impairs fatty acid synthesis from acetate where ACC1 is a rate-limiting enzyme. Overexpression of malonyl-CoA decarboxylase or siRNA (small interfering RNA) knockdown of ACC1 results in STAT6 activation, suggesting a role for malonyl-CoA in STAT6 signalling. The molecular mechanism of chromeceptin may provide a new pharmacological approach to selective inhibition of ACC1 for biological studies and pharmaceutical development.


1980 ◽  
Vol 255 (21) ◽  
pp. 10033-10035
Author(s):  
B.A. Ashcraft ◽  
W.S. Fillers ◽  
S.L. Augustine ◽  
S.D. Clarke

1989 ◽  
Vol 257 (4) ◽  
pp. R822-R828 ◽  
Author(s):  
M. J. Azain ◽  
J. A. Ontko

These studies were undertaken to further characterize and explain the differences in hepatic fatty acid metabolism between lean and obese Zucker rats. It was shown that the rate of palmitate or octanoate oxidation and the inhibition of palmitate oxidation by malonyl CoA in mitochondria isolated from lean and obese Zucker rats were similar. Cytochrome oxidase activity was similar in lean and obese rat livers. It was found that the addition of cytosol from the obese rat liver inhibited palmitate oxidation by 20-30% in mitochondria isolated from lean or obese rat livers and thus reproduced the conditions observed in the intact cell. Increased concentrations of metabolites such as malonyl CoA and glycerophosphate in the liver of the obese rat are likely contributors to this inhibitory effect. These results are extrapolated to the intact cell and suggest that decreased hepatic fatty acid oxidation in the obese rat can be accounted for by cytosolic influences on the mitochondria. The decreased rate of fatty acid oxidation observed in the intact hepatocyte or perfused liver cannot be explained by a defect in the capacity of mitochondria to oxidize substrate or by a decrease in mitochondrial number in the obese rat liver.


1982 ◽  
Vol 204 (1) ◽  
pp. 273-280 ◽  
Author(s):  
Elizabeth M. McNeillie ◽  
Victor A. Zammit

The ‘initial’ (I), endogenous phosphatase-activated (A) and citrate-activated (C) activities of acetyl-CoA carboxylase were measured in mammary-gland extracts of pregnant and lactating rats. There was a 10-fold increase in the A and C enzyme activities in the transition from early to peak lactation [cf. data of Mackall & Lane (1977) Biochem. J.162, 635–642], but there was no significant increase in the ratio of the initial activity to the A and C activities of the enzyme. Starvation (24h) or short-term (3h) streptozotocin-induced diabetes both resulted in a 40% decrease in I/A and I/C activity ratios. In starvation this was accompanied by a decrease in the absolute values of the A and C activities such that the initial activity in mammary glands of starved animals was 45% that in glands from fed animals. Insulin treatment of starved or diabetic animals 60min before killing increased the I activity without affecting the A or C enzyme activities. Removal of the pups for 24h from animals in peak lactation (weaning) resulted in a marked but similar decrease in all three activities such that, although the initial activity was only 10% of that in suckled animals, the I/A and I/C activity ratios remained high and unaltered. Inhibition of prolactin secretion by injection of 2-bromo-α-ergocryptine gave qualitatively similar results to those during weaning. Simultaneous administration of ovine prolactin completely prevented the effects of bromoergocryptine. It is suggested that the initial activity of acetyl-CoA carboxylase in rat mammary gland is regulated by at least two parallel mechanisms: (i) an acute regulation of the proportion of the enzyme in the active state and (ii) a longer-term modulation of enzyme concentration in the gland. Insulin appeared to mediate its acute effects through mechanism (i), whereas prolactin had longer-term effects on enzyme concentration in the gland. A comparison of initial enzyme activities (I) obtained in the present study with rates of lipogenesis measured in vivo [Agius & Williamson (1980) Biochem. J.192, 361–364; Munday & Williamson (1981) Biochem. J.196, 831–837] gave good agreement between the two sets of data for all conditions studied except for 24h-starved and streptozotocin-diabetic animals. It is suggested that acetyl-CoA carboxylase activity is rate-limiting for lipogenesis in the mammary gland in normal, fed, suckled or weaned animals but that in starved and short-term diabetic animals changes in the activity of the enzyme by covalent modification alone may not be sufficient to maintain the enzyme in its rate-limiting role.


2017 ◽  
Vol 38 (suppl_1) ◽  
Author(s):  
S. Lepropre ◽  
S. Kautbally ◽  
L. Bertrand ◽  
G.R. Steinberg ◽  
B.E. Kemp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document