synthetic small molecule
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 4)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3446
Author(s):  
Alexander E. Kabakov ◽  
Vladimir L. Gabai

The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines.


Author(s):  
Akshaya Murugesan ◽  
Phung Nguyen ◽  
Thiyagarajan Ramesh ◽  
Olli Yli-Harja ◽  
Meenakshisundaram Kandhavelu ◽  
...  

2021 ◽  
Vol 118 (34) ◽  
pp. e2023572118
Author(s):  
Ria L. Dinsdale ◽  
Tanadet Pipatpolkai ◽  
Emilio Agostinelli ◽  
Angela J. Russell ◽  
Phillip J. Stansfeld ◽  
...  

TMEM16A Ca2+-activated chloride channels are involved in multiple cellular functions and are proposed targets for diseases such as hypertension, stroke, and cystic fibrosis. This therapeutic endeavor, however, suffers from paucity of selective and potent modulators. Here, exploiting a synthetic small molecule with a biphasic effect on the TMEM16A channel, anthracene-9-carboxylic acid (A9C), we shed light on sites of the channel amenable for pharmacological intervention. Mutant channels with the intracellular gate constitutively open were generated. These channels were entirely insensitive to extracellular A9C when intracellular Ca2+ was omitted. However, when physiological Ca2+ levels were reestablished, the mutants regained sensitivity to A9C. Thus, intracellular Ca2+ is mandatory for the channel response to an extracellular modulator. The underlying mechanism is a conformational change in the outer pore that enables A9C to enter the pore to reach its binding site. The explanation of this structural rearrangement highlights a critical site for pharmacological intervention and reveals an aspect of Ca2+ gating in the TMEM16A channel.


mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Donghoon Kang ◽  
Liyang Zhang ◽  
Natalia V. Kirienko

ABSTRACT Antimicrobial resistance is a serious medical threat, particularly given the decreasing rate of discovery of new treatments. Although attempts to find new treatments continue, it has become clear that merely discovering new antimicrobials, even if they are new classes, will be insufficient. It is essential that new strategies be aggressively pursued. Toward that end, the search for treatments that can mitigate bacterial virulence and tilt the balance of host-pathogen interactions in favor of the host has become increasingly popular. In this review, we will discuss recent progress in this field, with a special focus on synthetic small molecule antivirulents that have been identified from high-throughput screens and on treatments that are effective against the opportunistic human pathogen Pseudomonas aeruginosa.


Author(s):  
Rakesh Chatrikhi ◽  
Callen F. Feeney ◽  
Mary J. Pulvino ◽  
Georgios Alachouzos ◽  
Andrew J. MacRae ◽  
...  

2020 ◽  
Author(s):  
Allison Bakovic ◽  
Kenneth Risner ◽  
Nishank Bhalla ◽  
Farhang Alem ◽  
Theresa L. Chang ◽  
...  

AbstractSummarySevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the newly emergent causative agent of coronavirus disease-19 (COVID-19), has resulted in more than one million deaths worldwide since it was first detected in 2019. There is a critical global need for therapeutic intervention strategies that can be deployed to safely treat COVID-19 disease and reduce associated morbidity and mortality. Increasing evidence shows that both natural and synthetic antimicrobial peptides (AMPs), also referred to as Host Defense Proteins/Peptides (HDPs), can inhibit SARS-CoV-2, paving the way for the potential clinical use of these molecules as therapeutic options. In this manuscript, we describe the potent antiviral activity exerted by brilacidin—a de novo designed synthetic small molecule that captures the biological properties of HDPs—on SARS-CoV-2 in a human lung cell line (Calu-3) and a monkey cell line (Vero). These data suggest that SARS-CoV-2 inhibition in these cell culture models is primarily a result of the impact of brilacidin on viral entry and its disruption of viral integrity. Brilacidin has demonstrated synergistic antiviral activity when combined with remdesivir. Collectively, our data demonstrate that brilacidin exerts potent inhibition of SARS-CoV-2 and thus supports brilacidin as a promising COVID-19 drug candidate.HighlightsBrilacidin potently inhibits SARS-CoV-2 in an ACE2 positive human lung cell line.Brilacidin achieved a high Selectivity Index of 426 (CC50=241μM/IC50=0.565μM).Brilacidin’s main mechanism appears to disrupt viral integrity and impact viral entry.Brilacidin and remdesivir exhibit excellent synergistic activity against SARS-CoV-2.Significance StatementSARS-CoV-2, the emergent novel coronavirus, has led to the current global COVID-19 pandemic, characterized by extreme contagiousness and high mortality rates. There is an urgent need for effective therapeutic strategies to safely and effectively treat SARS-CoV-2 infection. We demonstrate that brilacidin, a synthetic small molecule with peptide-like properties, is capable of exerting potent in vitro antiviral activity against SARS-CoV-2, both as a standalone treatment and in combination with remdesivir, which is currently the only FDA-approved drug for the treatment of COVID-19.


2020 ◽  
Author(s):  
Vaibhav Tiwari ◽  
Ritesh Tandon ◽  
Nehru Viji Sankaranarayanan ◽  
Jacob C. Beer ◽  
Ellen K. Kohlmeir ◽  
...  

AbstractThe COVID-19 pandemic caused by SARS-CoV-2 is in immediate need of an effective antidote. Although the Spike glycoprotein (SgP) of SARS-CoV-2 has been shown to bind to heparins, the structural features of this interaction, the role of a plausible heparan sulfate proteoglycan (HSPG) receptor, and the antagonism of this pathway through small molecules remain unaddressed. Using an in vitro cellular assay, we demonstrate HSPGs modified by the 3-O-sulfotransferase isoform-3, but not isoform-5, preferentially increased SgP-mediated cell-to-cell fusion in comparison to control, unmodified, wild-type HSPGs. Computational studies support preferential recognition of the receptor-binding domain of SgP by 3-O-sulfated HS sequences. Competition with either fondaparinux, a 3-O-sulfated HS-binding oligopeptide, or a synthetic, non-sugar small molecule, blocked SgP-mediated cell-to-cell fusion. Finally, the synthetic, sulfated molecule inhibited fusion of GFP-tagged pseudo SARS-CoV-2 with human 293T cells with sub-micromolar potency. Overall, overexpression of 3-O-sulfated HSPGs contribute to fusion of SARS-CoV-2, which could be effectively antagonized by a synthetic, small molecule.


2020 ◽  
Vol 80 (17) ◽  
pp. 3519-3529 ◽  
Author(s):  
Dakota N. Jackson ◽  
Kibrom M. Alula ◽  
Yaritza Delgado-Deida ◽  
Redouane Tabti ◽  
Kevin Turner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document