scholarly journals K+ Channel Interacting Proteins 2, 3 and 4 are Critical Components of Kv4 Channel Complexes in Cortical Pyramidal Neurons

2010 ◽  
Vol 98 (3) ◽  
pp. 137a
Author(s):  
Aaron J. Norris ◽  
Nicholas C. Foeger ◽  
Jeanne M. Nebonne
2020 ◽  
Author(s):  
Jonathan G. Murphy ◽  
Jakob J. Gutzmann ◽  
Lin Lin ◽  
Jiahua Hu ◽  
Ronald S. Petralia ◽  
...  

ABSTRACTThe transient voltage-gated K+ current (IA) mediated by Kv4.2 in CA1 hippocampal pyramidal neurons regulates dendritic excitability, synaptic plasticity, and learning. Here we report that Ca2+ entry mediated by the voltage-gated Ca2+ channel subunit Cav2.3 regulates Kv4.2 function in CA1 pyramidal neurons through Ca2+ binding auxiliary subunits known as K+ channel interacting proteins (KChIPs). We characterized an interaction between Cav2.3 and Kv4.2 using immunofluorescence colocalization, coimmunoprecipitation, electron microscopy, FRAP, and FRET. We found that Ca2+-entry via Cav2.3 increases Kv4.2-mediated whole-cell current due in part to an increase in Kv4.2 surface expression. In hippocampal neurons, pharmacological block of Cav2.3 reduced whole-cell IA. We also found reduced IA in Cav2.3 knockout mouse neurons with a loss of the dendritic IA gradient. Furthermore, the Cav2.3-Kv4.2 complex was found to regulate the size of synaptic currents and spine Ca2+ transients. These results reveal an intermolecular Cav2.3-Kv4.2 complex impacting synaptic integration in CA1 hippocampal neurons.


2020 ◽  
Vol 12 (570) ◽  
pp. eabc1492
Author(s):  
Lawrence S. Hsieh ◽  
John H. Wen ◽  
Lena H. Nguyen ◽  
Longbo Zhang ◽  
Stephanie A. Getz ◽  
...  

The causative link between focal cortical malformations (FCMs) and epilepsy is well accepted, especially among patients with focal cortical dysplasia type II (FCDII) and tuberous sclerosis complex (TSC). However, the mechanisms underlying seizures remain unclear. Using a mouse model of TSC- and FCDII-associated FCM, we showed that FCM neurons were responsible for seizure activity via their unexpected abnormal expression of the hyperpolarization-activated cyclic nucleotide–gated potassium channel isoform 4 (HCN4), which is normally not present in cortical pyramidal neurons after birth. Increasing intracellular cAMP concentrations, which preferentially affects HCN4 gating relative to the other isoforms, drove repetitive firing of FCM neurons but not control pyramidal neurons. Ectopic HCN4 expression was dependent on the mechanistic target of rapamycin (mTOR), preceded the onset of seizures, and was also found in diseased neurons in tissue resected from patients with TSC and FCDII. Last, blocking HCN4 channel activity in FCM neurons prevented epilepsy in the mouse model. These findings suggest that HCN4 play a main role in seizure and identify a cAMP-dependent seizure mechanism in TSC and FCDII. Furthermore, the unique expression of HCN4 exclusively in FCM neurons suggests that gene therapy targeting HCN4 might be effective in reducing seizures in FCDII or TSC.


2009 ◽  
Vol 19 (11) ◽  
pp. 2719-2727 ◽  
Author(s):  
J.-R. Chen ◽  
Y.-T. Yan ◽  
T.-J. Wang ◽  
L.-J. Chen ◽  
Y.-J. Wang ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10596 ◽  
Author(s):  
Ning Li ◽  
Chun-Tao Zhao ◽  
Ying Wang ◽  
Xiao-Bing Yuan

2013 ◽  
Vol 218 (6) ◽  
pp. 1407-1417 ◽  
Author(s):  
Jeng-Rung Chen ◽  
Tsyr-Jiuan Wang ◽  
Seh-Hong Lim ◽  
Yueh-Jan Wang ◽  
Guo-Fang Tseng

Sign in / Sign up

Export Citation Format

Share Document