scholarly journals The HCM-Linked Ala13thr Mutation in the Cardiac Myosin Regulatory Light Chain Increases Isometric Force Production

2011 ◽  
Vol 100 (3) ◽  
pp. 111a
Author(s):  
Katarzyna Kazmierczak ◽  
Priya Muthu ◽  
Wenrui Huang ◽  
Ana Rojas ◽  
Michelle Jones ◽  
...  
2009 ◽  
Vol 23 (10) ◽  
pp. 3571-3580 ◽  
Author(s):  
Kiran Pant ◽  
James Watt ◽  
Michael Greenberg ◽  
Michelle Jones ◽  
Danuta Szczesna-Cordary ◽  
...  

Author(s):  
Peter O Awinda ◽  
Marissa Watanabe ◽  
Yemeserach M. Bishaw ◽  
Anna M Huckabee ◽  
Keinan B Agonias ◽  
...  

Morbidity and mortality associated with heart disease is a growing threat to the global population and novel therapies are needed. Mavacamten (formerly called MYK-461) is a small molecule that binds to cardiac myosin and inhibits myosin ATPase. Mavacamten is currently in clinical trials for the treatment of obstructive hypertrophic cardiomyopathy (HCM), and it may provide benefits for treating other forms of heart disease. We investigated the effect of mavacamten on cardiac muscle contraction in two transgenic mouse lines expressing the human isoform of cardiac myosin regulatory light chain (RLC) in their hearts. Control mice expressed wild-type RLC (WT-RLC), and HCM mice expressed the N47K RLC mutation. In the absence of mavacamten, skinned papillary muscle strips from WT-RLC mice produced greater isometric force than strips from N47K mice. Adding 0.3 µM mavacamten decreased maximal isometric force and reduced Ca2+-sensitivity of contraction for both genotypes, but this reduction in pCa50 was nearly twice as large for WT-RLC vs. N47K. We also used stochastic length-perturbation analysis to characterize cross-bridge kinetics. The cross-bridge detachment rate was measured as a function of [MgATP] to determine the effect of mavacamten on myosin nucleotide handling rates. Mavacamten increased the MgADP release and MgATP binding rates for both genotypes, thereby contributing to faster cross-bridge detachment, which could speed myocardial relaxation during diastole. Our data suggest that mavacamten reduces isometric tension and Ca2+-sensitivity of contraction via decreased strong cross-bridge binding. Mavacamten may become a useful therapy for patients with heart disease, including some forms of HCM.


2012 ◽  
Vol 442 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Katarzyna Kazmierczak ◽  
Priya Muthu ◽  
Wenrui Huang ◽  
Michelle Jones ◽  
Yingcai Wang ◽  
...  

FHC (familial hypertrophic cardiomyopathy) is a heritable form of cardiac hypertrophy caused by mutations in genes encoding sarcomeric proteins. The present study focuses on the A13T mutation in the human ventricular myosin RLC (regulatory light chain) that is associated with a rare FHC variant defined by mid-ventricular obstruction and septal hypertrophy. We generated heart-specific Tg (transgenic) mice with ~10% of human A13T-RLC mutant replacing the endogenous mouse cardiac RLC. Histopathological examinations of longitudinal heart sections from Tg-A13T mice showed enlarged interventricular septa and profound fibrotic lesions compared with Tg-WT (wild-type), expressing the human ventricular RLC, or non-Tg mice. Functional studies revealed an abnormal A13T mutation-induced increase in isometric force production, no change in the force–pCa relationship and a decreased Vmax of the acto-myosin ATPase. In addition, a fluorescence-based assay showed a 3-fold lower binding affinity of the recombinant A13T mutant for the RLC-depleted porcine myosin compared with WT-RLC. These results suggest that the A13T mutation triggers a hypertrophic response through changes in cardiac sarcomere organization and myosin cross-bridge function leading to abnormal remodelling of the heart. The significant functional changes observed, despite a low level of A13T mutant incorporation into myofilaments, suggest a ‘poison-peptide’ mechanism of disease.


2010 ◽  
Vol 34 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Yuanhong Li ◽  
Gang Wu ◽  
Qizhu Tang ◽  
Congxin Huang ◽  
Hong Jiang ◽  
...  

2009 ◽  
Vol 297 (2) ◽  
pp. R265-R274 ◽  
Author(s):  
Michael J. Greenberg ◽  
Tanya R. Mealy ◽  
James D. Watt ◽  
Michelle Jones ◽  
Danuta Szczesna-Cordary ◽  
...  

Phosphorylation of the myosin regulatory light chain (RLC) in skeletal muscle has been proposed to act as a molecular memory of recent activation by increasing the rate of force development, ATPase activity, and isometric force at submaximal activation in fibers. It has been proposed that these effects stem from phosphorylation-induced movement of myosin heads away from the thick filament backbone. In this study, we examined the molecular effects of skeletal muscle myosin RLC phosphorylation using in vitro motility assays. We showed that, independently of the thick filament backbone, the velocity of skeletal muscle myosin is decreased upon phosphorylation due to an increase in the myosin duty cycle. Furthermore, we did not observe a phosphorylation-dependent shift in calcium sensitivity in the absence of the myosin thick filament. These data suggest that phosphorylation-induced movement of myosin heads away from the thick filament backbone explains only part of the observed phosphorylation-induced changes in myosin mechanics. Last, we showed that the duty cycle of skeletal muscle myosin is strain dependent, consistent with the notion that strain slows the rate of ADP release in striated muscle.


2020 ◽  
Vol 295 (14) ◽  
pp. 4398-4410 ◽  
Author(s):  
Ivanka R. Sevrieva ◽  
Birgit Brandmeier ◽  
Saraswathi Ponnam ◽  
Mathias Gautel ◽  
Malcolm Irving ◽  
...  

Heart muscle contractility and performance are controlled by posttranslational modifications of sarcomeric proteins. Although myosin regulatory light chain (RLC) phosphorylation has been studied extensively in vitro and in vivo, the precise role of cardiac myosin light chain kinase (cMLCK), the primary kinase acting upon RLC, in the regulation of cardiomyocyte contractility remains poorly understood. In this study, using recombinantly expressed and purified proteins, various analytical methods, in vitro and in situ kinase assays, and mechanical measurements in isolated ventricular trabeculae, we demonstrate that human cMLCK is not a dedicated kinase for RLC but can phosphorylate other sarcomeric proteins with well-characterized regulatory functions. We show that cMLCK specifically monophosphorylates Ser23 of human cardiac troponin I (cTnI) in isolation and in the trimeric troponin complex in vitro and in situ in the native environment of the muscle myofilament lattice. Moreover, we observed that human cMLCK phosphorylates rodent cTnI to a much smaller extent in vitro and in situ, suggesting species-specific adaptation of cMLCK. Although cMLCK treatment of ventricular trabeculae exchanged with rat or human troponin increased their cross-bridge kinetics, the increase in sensitivity of myofilaments to calcium was significantly blunted by human TnI, suggesting that human cTnI phosphorylation by cMLCK modifies the functional consequences of RLC phosphorylation. We propose that cMLCK-mediated phosphorylation of TnI is functionally significant and represents a critical signaling pathway that coordinates the regulatory states of thick and thin filaments in both physiological and potentially pathophysiological conditions of the heart.


Sign in / Sign up

Export Citation Format

Share Document