scholarly journals Excitation-Energy Transfer Dynamics of Higher Plant Photosystem I Light-Harvesting Complexes

2011 ◽  
Vol 100 (5) ◽  
pp. 1372-1380 ◽  
Author(s):  
Emilie Wientjes ◽  
Ivo H.M. van Stokkum ◽  
Herbert van Amerongen ◽  
Roberta Croce
eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Yuval Mazor ◽  
Anna Borovikova ◽  
Nathan Nelson

Most life forms on Earth are supported by solar energy harnessed by oxygenic photosynthesis. In eukaryotes, photosynthesis is achieved by large membrane-embedded super-complexes, containing reaction centers and connected antennae. Here, we report the structure of the higher plant PSI-LHCI super-complex determined at 2.8 Å resolution. The structure includes 16 subunits and more than 200 prosthetic groups, which are mostly light harvesting pigments. The complete structures of the four LhcA subunits of LHCI include 52 chlorophyll a and 9 chlorophyll b molecules, as well as 10 carotenoids and 4 lipids. The structure of PSI-LHCI includes detailed protein pigments and pigment–pigment interactions, essential for the mechanism of excitation energy transfer and its modulation in one of nature's most efficient photochemical machines.


2020 ◽  
Vol 221 ◽  
pp. 59-76 ◽  
Author(s):  
Sue Ann Oh ◽  
David F. Coker ◽  
David A. W. Hutchinson

We review our recent work showing how important the site-to-site variation in coupling between chloroplasts in FMO and their protein scaffold environment is for energy transport in FMO and investigate the role of vibronic modes in this transport.


2021 ◽  
Author(s):  
Arif Ullah ◽  
Pavlo O. Dral

Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs) is essential for understanding the natural processes and design of highly-efficient photovoltaic devices. LHCs are open systems, where quantum effects may play a crucial role for almost perfect utilization of solar energy. Simulation of energy transfer with inclusion of quantum effects can be done within the framework of dissipative quantum dynamics (QD), which are computationally expensive. Thus, artificial intelligence (AI) offers itself as a tool for reducing the computational cost. We suggest AI-QD approach using AI to directly predict QD as a function of time and other parameters such as temperature, reorganization energy, etc., completely circumventing the need of recursive step-wise dynamics propagation in contrast to the traditional QD and alternative, recursive AI-based QD approaches. Our trajectory-learning AI-QD approach is able to predict the correct asymptotic behavior of QD at infinite time. We demonstrate AI-QD on seven-sites Fenna–Matthews–Olson (FMO) complex.


Sign in / Sign up

Export Citation Format

Share Document