scholarly journals Single-Channel Mechanism of Modulation of Calcium-Dependent Inactivation of the Voltage-Gated Calcium Channel Cav1.3 by its C-Terminus

2013 ◽  
Vol 104 (2) ◽  
pp. 459a
Author(s):  
Elena Novikova ◽  
Elza Kuzmenkina ◽  
Wanchana Jangsangthong ◽  
Jan Matthes ◽  
Alexandra Koschak ◽  
...  
Neuron ◽  
2019 ◽  
Vol 101 (6) ◽  
pp. 1134-1149.e3 ◽  
Author(s):  
Fayal Abderemane-Ali ◽  
Felix Findeisen ◽  
Nathan D. Rossen ◽  
Daniel L. Minor

2009 ◽  
Vol 133 (3) ◽  
pp. 327-343 ◽  
Author(s):  
Felix Findeisen ◽  
Daniel L. Minor

Two processes dominate voltage-gated calcium channel (CaV) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The CaVβ/CaVα1-I-II loop and Ca2+/calmodulin (CaM)/CaVα1–C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6–α-interaction domain (AID) linker provides a rigid connection between the pore and CaVβ/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate CaV1.2 (L-type) and CaV2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt CaVβ/I-II association sharply decelerate CDI and reduce a second Ca2+/CaM/CaVα1–C-terminal–mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, CaVβ and the IS6-AID linker, are essential for calcium-dependent modulation, and that both CaVβ-dependent and CaM-dependent components couple to the pore by a common mechanism requiring CaVβ and an intact IS6-AID linker.


Cell ◽  
2006 ◽  
Vol 127 (3) ◽  
pp. 591-606 ◽  
Author(s):  
Natalia Gomez-Ospina ◽  
Fuminori Tsuruta ◽  
Odmara Barreto-Chang ◽  
Linda Hu ◽  
Ricardo Dolmetsch

2018 ◽  
Vol 115 (6) ◽  
pp. 1376-1381 ◽  
Author(s):  
Marta Campiglio ◽  
Pierre Costé de Bagneaux ◽  
Nadine J. Ortner ◽  
Petronel Tuluc ◽  
Filip Van Petegem ◽  
...  

The adaptor proteins STAC1, STAC2, and STAC3 represent a newly identified family of regulators of voltage-gated calcium channel (CaV) trafficking and function. The skeletal muscle isoform STAC3 is essential for excitation–contraction coupling and its mutation causes severe muscle disease. Recently, two distinct molecular domains in STAC3 were identified, necessary for its functional interaction with CaV1.1: the C1 domain, which recruits STAC proteins to the calcium channel complex in skeletal muscle triads, and the SH3-1 domain, involved in excitation–contraction coupling. These interaction sites are conserved in the three STAC proteins. However, the molecular domain in CaV1 channels interacting with the STAC C1 domain and the possible role of this interaction in neuronal CaV1 channels remained unknown. Using CaV1.2/2.1 chimeras expressed in dysgenic (CaV1.1−/−) myotubes, we identified the amino acids 1,641–1,668 in the C terminus of CaV1.2 as necessary for association of STAC proteins. This sequence contains the IQ domain and alanine mutagenesis revealed that the amino acids important for STAC association overlap with those making contacts with the C-lobe of calcium-calmodulin (Ca/CaM) and mediating calcium-dependent inactivation of CaV1.2. Indeed, patch-clamp analysis demonstrated that coexpression of either one of the three STAC proteins with CaV1.2 opposed calcium-dependent inactivation, although to different degrees, and that substitution of the CaV1.2 IQ domain with that of CaV2.1, which does not interact with STAC, abolished this effect. These results suggest that STAC proteins associate with the CaV1.2 C terminus at the IQ domain and thus inhibit calcium-dependent feedback regulation of CaV1.2 currents.


2018 ◽  
Vol 115 (45) ◽  
pp. E10556-E10565 ◽  
Author(s):  
Kaiqian Wang ◽  
Christian Holt ◽  
Jocelyn Lu ◽  
Malene Brohus ◽  
Kamilla Taunsig Larsen ◽  
...  

Calmodulin (CaM) represents one of the most conserved proteins among eukaryotes and is known to bind and modulate more than a 100 targets. Recently, several disease-associated mutations have been identified in theCALMgenes that are causative of severe cardiac arrhythmia syndromes. Although several mutations have been shown to affect the function of various cardiac ion channels, direct structural insights into any CaM disease mutation have been lacking. Here we report a crystallographic and NMR investigation of several disease mutant CaMs, linked to long-QT syndrome, in complex with the IQ domain of the cardiac voltage-gated calcium channel (CaV1.2). Surprisingly, two mutants (D95V, N97I) cause a major distortion of the C-terminal lobe, resulting in a pathological conformation not reported before. These structural changes result in altered interactions with the CaV1.2 IQ domain. Another mutation (N97S) reduces the affinity for Ca2+by introducing strain in EF hand 3. A fourth mutant (F141L) shows structural changes in the Ca2+-free state that increase the affinity for the IQ domain. These results thus show that different mechanisms underlie the ability of CaM disease mutations to affect Ca2+-dependent inactivation of the voltage-gated calcium channel.


Sign in / Sign up

Export Citation Format

Share Document