activation potential
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 27)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
pp. 100072
Author(s):  
Sarah Sze Wah Wong ◽  
Sarah Dellière ◽  
Natalia Schiefermeier-Mach ◽  
Lukas Lechner ◽  
Susanne Perkhofer ◽  
...  

Author(s):  
M. I. Romashchenko ◽  
B. I. Konakov ◽  
V. V. Polishchuk ◽  
S. V. Usatyi

The history of the discovery, the specificity of the process and the current state of the use of electrochemically activated water (ECHAW) in various sectors of the economy are analyzed and the possibilities of its use in irrigation are determined. It has been established that the most promising area of ​​application of ECHAW in irrigated agriculture are drip irrigation systems. The adding an anolyte to water during drip irrigation can significantly reduce (or even eliminate) the need to use plant protection products and the adding an catholyte significantly accelerates the development and increases the yield of agricultural crops against the background of improving product quality. The ecological consequences of this are the reduction of anthropogenic load on irrigated lands through the complete or partial replacement of chemical plant protection products with anolyte, which is an environmentally safe liquid; economic - increasing profitability and reducing the payback period of land irrigation projects. It has been determined that the prospect of using ECHAW in drip irrigation systems is due to the fact that the water supply technology allows supplying catholyte and anolyte to the field with minimal losses of activation potential. A predisposing factor for the use of ECHAW in drip irrigation systems is also their design according to a modular principle, which contributes to the possibility of equipping water treatment units of systems with ECHAW modules. At the same time, the design of systems should be carried out taking into account not only the need to ensure uniform distribution of water by droppers over the field, but also with the preservation of the activation potential of electrochemically activated components of irrigation water. Based on the foregoing, it can be considered that the development of means of electrochemical activation of water for irrigation needs, as well as technologies for the use of such water in growing crops is relevant and timely. The deployment of fundamental and applied research will contribute to the development of domestic equipment for the industrial production of ECHAW and will allow adapting the world technologies of their use to the conditions and needs of the Ukrainian manufacturer and consumer. The use of electrochemically activated water in drip irrigation systems can be especially effective.


Author(s):  
Parijat Senapati ◽  
Aditya Bhattacharya ◽  
Sadhan Das ◽  
Suchismita Dey ◽  
Deepthi Sudarshan ◽  
...  

Nucleophosmin (NPM1) is a multifunctional histone chaperone that can activate acetylation-dependent transcription from chromatin templates in vitro. Acetylation of NPM1 by p300 has been shown to further enhance its transcription activation potential. Moreover, its total and acetylated pools are increased in oral squamous cell carcinoma. However, the role of NPM1 or its acetylated form (AcNPM1) in transcriptional regulation in cells and oral tumorigenesis is not fully elucidated. Using ChIP-seq analyses, we provide the first genome-wide profile of AcNPM1 and show that AcNPM1 is enriched at transcriptional regulatory elements. AcNPM1 co-occupies marks of active transcription at promoters and DNase I hypersensitive sites at enhancers. In addition, using a high-throughput protein interaction profiling approach, we show that NPM1 interacts with RNA Pol II, general transcription factors, mediator subunits, histone acetyltransferase complexes, and chromatin remodelers. NPM1 histone chaperone activity also contributes to its transcription activation potential. Further, NPM1 depletion leads to decreased AcNPM1 occupancy and reduced expression of genes required for proliferative, migratory and invasive potential of oral cancer cells. NPM1 depletion also abrogates the growth of orthotopic tumors in mice. Collectively, these results establish that AcNPM1 functions as a coactivator during during RNA polymerase II-driven transcription and regulates the expression of genes that promote oral tumorigenesis.


2021 ◽  
Vol 1 (31) ◽  
pp. 13-18
Author(s):  
E. V. Abakushina ◽  
Yu. V. Gel’m ◽  
E. Yu. Lyssuk

This article describes a method for activating lymphocytes isolated from the peripheral blood of melanoma patients and cultured in a medium supplemented with IL‑2 and IL‑15. It was shown that in these terms, lymphocytes have an increased proliferative and activation potential. The combination of cytokines has a positive effect on cytotoxicity, viability and the expression of activation markers (CD38, CD69, CD25, HLA-DR and NKG2D) on NK- and T-lymphocyte, and may be recommended for the culture of lymphocytes in melanoma patients for the purpose of adoptive immunotherapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ovidio Jiménez Martín ◽  
Andreas Schlosser ◽  
Rhoikos Furtwängler ◽  
Jenny Wegert ◽  
Manfred Gessler

Abstract Background Wilms tumor (WT) is the most common renal tumor in childhood. Among others, MYCN copy number gain and MYCN P44L and MAX R60Q mutations have been identified in WT. MYCN encodes a transcription factor that requires dimerization with MAX to activate transcription of numerous target genes. MYCN gain has been associated with adverse prognosis in different childhood tumors including WT. The MYCN P44L and MAX R60Q mutations, located in either the transactivating or basic helix-loop-helix domain, respectively, are predicted to be damaging by different pathogenicity prediction tools, but the functional consequences remain to be characterized. Methods We screened a large cohort of unselected WTs for MYCN and MAX alterations. Wild-type and mutant protein function were characterized biochemically, and we analyzed the N-MYC protein interactome by mass spectrometric analysis of N-MYC containing protein complexes. Results Mutation screening revealed mutation frequencies of 3% for MYCN P44L and 0.9% for MAX R60Q that are associated with a higher risk of relapse. Biochemical characterization identified a reduced transcriptional activation potential for MAX R60Q, while the MYCN P44L mutation did not change activation potential or protein stability. The protein interactome of N-MYC-P44L was likewise not altered as shown by mass spectrometric analyses of purified N-MYC complexes. Nevertheless, we could identify a number of novel N-MYC partner proteins, e.g. PEG10, YEATS2, FOXK1, CBLL1 and MCRS1, whose expression is correlated with MYCN in WT samples and several of these are known for their own oncogenic potential. Conclusions The strongly elevated risk of relapse associated with mutant MYCN and MAX or elevated MYCN expression corroborates their role in WT oncogenesis. Together with the newly identified co-expressed interactors they expand the range of potential biomarkers for WT stratification and targeting, especially for high-risk WT.


Author(s):  
Sirin Saranyutanon ◽  
Srijan Acharya ◽  
Sachin Kumar Deshmukh ◽  
Mohammad Aslam Khan ◽  
Seema Singh ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bernadette Rosati ◽  
Sigurd Christiansen ◽  
Anders Dinesen ◽  
Pontus Roldin ◽  
Andreas Massling ◽  
...  

AbstractSea spray aerosol (SSA) contributes significantly to natural aerosol particle concentrations globally, in marine areas even dominantly. The potential changes of the omnipresent inorganic fraction of SSA due to atmospheric ageing is largely unexplored. In the atmosphere, SSA may exist as aqueous phase solution droplets or as dried solid or amorphous particles. We demonstrate that ageing of liquid NaCl and artificial sea salt aerosol by exposure to ozone and UV light leads to a substantial decrease in hygroscopicity and cloud activation potential of the dried particles of the same size. The results point towards surface reactions on the liquid aerosols that are more crucial for small particles and the formation of salt structures with water bound within the dried aerosols, termed hydrates. Our findings suggest an increased formation of hydrate forming salts during ageing and the presence of hydrates in dried SSA. Field observations indicate a reduced hygroscopic growth factor of sub-micrometre SSA in the marine atmosphere compared to fresh laboratory generated NaCl or sea salt of the same dry size, which is typically attributed to organic matter or sulphates. Aged inorganic sea salt offers an additional explanation for such a measured reduced hygroscopic growth factor and cloud activation potential.


2021 ◽  
Vol 5 (5) ◽  
pp. 1523-1534
Author(s):  
Johan Courjon ◽  
Océane Dufies ◽  
Alexandre Robert ◽  
Laurent Bailly ◽  
Cédric Torre ◽  
...  

Abstract Dysregulated immune response is the key factor leading to unfavorable coronavirus disease 2019 (COVID-19) outcome. Depending on the pathogen-associated molecular pattern, the NLRP3 inflammasome can play a crucial role during innate immunity activation. To date, studies describing the NLRP3 response during severe acute respiratory syndrome coronavirus 2 infection in patients are lacking. We prospectively monitored caspase-1 activation levels in peripheral myeloid cells from healthy donors and patients with mild to critical COVID-19. The caspase-1 activation potential in response to NLRP3 inflammasome stimulation was opposed between nonclassical monocytes and CD66b+CD16dim granulocytes in severe and critical COVID-19 patients. Unexpectedly, the CD66b+CD16dim granulocytes had decreased nigericin-triggered caspase-1 activation potential associated with an increased percentage of NLRP3 inflammasome impaired immature neutrophils and a loss of eosinophils in the blood. In patients who recovered from COVID-19, nigericin-triggered caspase-1 activation potential in CD66b+CD16dim cells was restored and the proportion of immature neutrophils was similar to control. Here, we reveal that NLRP3 inflammasome activation potential differs among myeloid cells and could be used as a biomarker of a COVID-19 patient’s evolution. This assay could be a useful tool to predict patient outcome. This trial was registered at www.clinicaltrials.gov as #NCT04385017.


2020 ◽  
Author(s):  
Bernadette Rosati ◽  
Sigurd Christiansen ◽  
Anders Dinesen ◽  
Pontus Roldin ◽  
Andreas Massling ◽  
...  

Abstract Sea spray aerosol (SSA) contributes significantly to natural aerosol particle concentrations globally, in marine areas even dominantly. The potential changes of the omnipresent inorganic fraction of SSA due to atmospheric ageing is largely unexplored. We demonstrate that ageing of liquid NaCl and artificial sea salt aerosol by exposure to ozone and UV light leads to a substantial decrease in hygroscopicity and cloud activation potential. The results point towards surface reactions that are more crucial for small particles and the formation of salt structures with water bound within the aerosols, termed hydrates. Our findings suggest an increased formation of hydrate forming salts during ageing and the presence of hydrates in dried SSA. Field observations indicate a reduced hygroscopic growth of sub-micrometre SSA in the marine atmosphere compared to pure NaCl which is typically attributed to organic matter or sulphates. Aged inorganic sea salt offers an additional explanation for reduced hygroscopicity and cloud activation potential.


Sign in / Sign up

Export Citation Format

Share Document