scholarly journals Global and Specific Interactions between Mechanosensitive Ion Channels and the Lipid Bilayer

2016 ◽  
Vol 110 (3) ◽  
pp. 195a-196a
Author(s):  
Boris Martinac
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 323
Author(s):  
Martina Nicoletti ◽  
Letizia Chiodo ◽  
Alessandro Loppini

Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.


1989 ◽  
Vol 16 (3) ◽  
pp. 274-280
Author(s):  
Boris Isomaa ◽  
Henry Hägerstrand ◽  
Gun I.L. Paatero

Amphiphilic compounds with distinct apolar and polar parts are readily intercalated into the erythrocyte membrane. When intercalated into the membrane, amphiphiles are probably orientated so that the polar head is at the polar-apolar interface of the lipid bilayer and the hydrophobic part within the apolar core of the bilayer. However, by virtue of their difference in molecular shape from the bulk lipids of the lipid bilayer, it is possible that the intercalated amphiphiles are partly segregated from bulk lipids and accumulate at protein-lipid interfaces in the bilayer, where the packing of the bilayer lipids may be less ordered. Our studies show that amphiphiles, when intercalated into the erythrocyte membrane, trigger alterations in several membrane-connected functions. Some of the alterations induced (decreased osmotic fragility, increased passive potassium fluxes) seem to be due to non-specific interactions of the amphiphiles with the membrane, whereas other functions (ion transport mediated by membrane proteins, regulation of cell shape) seem to be sensitive to particular features of the amphiphiles. Our studies indicate that the intercalation of amphiphiles into the erythrocyte membrane must involve rearrangements within the lipid bilayer. We have suggested that, when intercalated into the lipid bilayer, amphiphiles trigger a rapid formation of non-bilayer phases, which protect the bilayer against a collapse and bring about a trans-bilayer redistribution of intercalated amphiphiles as well as of bilayer lipids. At high sublytic concentrations, this process may also involve a release of microvesicles from the membrane.


2021 ◽  
Author(s):  
Jung-uk Lee ◽  
Wookjin Shin ◽  
Yongjun Lim ◽  
Jungsil Kim ◽  
Woon Ryoung Kim ◽  
...  

Author(s):  
Ali Momin ◽  
Shahrzad Bahrampour ◽  
Hyun-Kee Min ◽  
Xin Chen ◽  
Xian Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document