intracellular organelles
Recently Published Documents


TOTAL DOCUMENTS

399
(FIVE YEARS 120)

H-INDEX

56
(FIVE YEARS 7)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Omar Peña-Ramos ◽  
Lucia Chiao ◽  
Xianghua Liu ◽  
Xiaomeng Yu ◽  
Tianyou Yao ◽  
...  

Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. During the development of the nematode Caenorhabditis elegans, many somatic and germ cells undergo apoptosis. These cells are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells using a real-time imaging technique. Specifically, the double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner vesicle to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant defects in the degradation of apoptotic cells, demonstrating the importance of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, the adaptor protein CED-6, and the large GTPase dynamin (DYN-1) promotes the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex components. Further observations suggest that autophagosomes provide apoptotic cell-degradation activities in addition to and in parallel of lysosomes. Our findings reveal that, unlike the single-membrane, LC3-associated phagocytosis (LAP) vesicles reported for mammalian phagocytes, the canonical double-membrane autophagosomes facilitate the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream signaling molecules that initiate this crosstalk.


2021 ◽  
Author(s):  
Ivan A Kuznetsov ◽  
Andrey V Kuznetsov

This paper reports a minimal model simulating the growth of a Lewy body (LB). The LB is assumed to consist of a central spherical core, which is composed of membrane fragments and various dysfunctional intracellular organelles, and a halo, which is composed of alpha-synuclein fibrils. Membrane fragments and alpha-synuclein monomers are assumed to be produced in the soma at constant rates. The growth of the core and the halo are simulated by the Finke-Watzky model. Analytical solutions describing the growth of the core and the halo are obtained.


2021 ◽  
Author(s):  
Karl Zhanghao ◽  
meiqi Li ◽  
Xingye Chen ◽  
Wenhui Liu ◽  
Yiming Wang ◽  
...  

The number of colors that can be used in fluorescence microscopy to image the live-cell anatomy and organelles' interactions is far less than the number of intracellular organelles and compartments. Here, we report that deep convolutional neuronal networks can predict 15 subcellular structures from super-resolution spinning-disk microscopy images using only one dye, one laser excitation, and two detection channels. Comparing to the colocalization images, this method achieves pixel accuracies of over 91.7%, which not only bypasses the fundamental limitation of multi-color imaging but also accelerates the imaging speed by more than one order of magnitude.


2021 ◽  
Author(s):  
Daniel Franco-Barranco ◽  
Arrate Muñoz-Barrutia ◽  
Ignacio Arganda-Carreras

AbstractElectron microscopy (EM) allows the identification of intracellular organelles such as mitochondria, providing insights for clinical and scientific studies. In recent years, a number of novel deep learning architectures have been published reporting superior performance, or even human-level accuracy, compared to previous approaches on public mitochondria segmentation datasets. Unfortunately, many of these publications make neither the code nor the full training details public, leading to reproducibility issues and dubious model comparisons. Thus, following a recent code of best practices in the field, we present an extensive study of the state-of-the-art architectures and compare them to different variations of U-Net-like models for this task. To unveil the impact of architectural novelties, a common set of pre- and post-processing operations has been implemented and tested with each approach. Moreover, an exhaustive sweep of hyperparameters has been performed, running each configuration multiple times to measure their stability. Using this methodology, we found very stable architectures and training configurations that consistently obtain state-of-the-art results in the well-known EPFL Hippocampus mitochondria segmentation dataset and outperform all previous works on two other available datasets: Lucchi++ and Kasthuri++. The code and its documentation are publicly available at https://github.com/danifranco/EM_Image_Segmentation.


2021 ◽  
Author(s):  
Sylvestre Bachollet ◽  
Yuriy Shpinov ◽  
Fanny Broch ◽  
Hela Benaissa ◽  
Arnaud Gautier ◽  
...  

We report on new fluorogenic HaloTag probes based on a molecular rotor design. Thanks to their viscosity-sensitive emission, the probes light-up upon reaction with the protein self-labeling tag HaloTag. The palette of probes cover an emission range from green to red and exhibit remarkably low non-specific signal that enabled wash-free targeted imaging of intracellular organelles and proteins with good contrast in live Hela cells.


2021 ◽  
Author(s):  
Satoshi Watanabe ◽  
Yuta Nihongaki ◽  
Kie Itoh ◽  
Shigeki Watanabe ◽  
Takanari Inoue

Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we designed a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid induction of organelle defunctionalization via remodeling of the membrane phospholipid composition. In particular, we identified a minimal, fully catalytic PLAAT with no unfavorable side effects. Chemically-induced translocation of the engineered PLAAT to the mitochondria surface resulted in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapted the molecular tool in peroxisomes, and observed leakage of matrix-resident functional proteins. The technique was compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should present a novel utility in organelle biology of diverse contexts.


2021 ◽  
Vol 220 (11) ◽  
Author(s):  
Jingjing Zhang ◽  
Ying Hu ◽  
Yanli Wang ◽  
Lin Fu ◽  
Xiumei Xu ◽  
...  

In eukaryote cells, lipid droplets (LDs) are key intracellular organelles that dynamically regulate cellular energy homeostasis. LDs originate from the ER and continuously contact the ER during their growth. How the ER affects LD growth is largely unknown. Here, we show that RNAi knockdown of acs-1, encoding an acyl-CoA synthetase required for the biosynthesis of monomethyl branched-chain fatty acids C15iso and C17iso, remarkably prevented LD growth in Caenorhabditis elegans. Dietary C17iso, or complex lipids with C17iso including phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol, could fully restore the LD growth in the acs-1RNAi worms. Mechanistically, C17iso may incorporate into phospholipids to ensure the membrane integrity of the ER so as to maintain the function of ER-resident enzymes such as SCD/stearoyl-CoA desaturase and DGAT2/diacylglycerol acyltransferase for appropriate lipid synthesis and LD growth. Collectively, our work uncovers a unique fatty acid, C17iso, as the side chain of phospholipids for determining the ER homeostasis for LD growth in an intact organism, C. elegans.


2021 ◽  
Vol 22 (19) ◽  
pp. 10369
Author(s):  
Ishay Wohl ◽  
Eilon Sherman

Organization of intracellular content is affected by multiple simultaneous processes, including diffusion in a viscoelastic and structured environment, intracellular mechanical work and vibrations. The combined effects of these processes on intracellular organization are complex and remain poorly understood. Here, we studied the organization and dynamics of a free Ca++ probe as a small and mobile tracer in live T cells. Ca++, highlighted by Fluo-4, is localized in intracellular organelles. Inhibiting intracellular mechanical work by myosin II through blebbistatin treatment increased cellular dis-homogeneity of Ca++-rich features in length scale < 1.1 μm. We detected a similar effect in cells imaged by label-free bright-field (BF) microscopy, in mitochondria-highlighted cells and in ATP-depleted cells. Blebbistatin treatment also reduced the dynamics of the Ca++-rich features and generated prominent negative temporal correlations in their signals. Following Guggenberger et al. and numerical simulations, we suggest that diffusion in the viscoelastic and confined medium of intracellular organelles may promote spatial dis-homogeneity and stability of their content. This may be revealed only after inhibiting intracellular mechanical work and related cell vibrations. Our described mechanisms may allow the cell to control its organization via balancing its viscoelasticity and mechanical activity, with implications to cell physiology in health and disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linhui Yu ◽  
Jilian Fan ◽  
Chao Zhou ◽  
Changcheng Xu

AbstractLipid droplets (LDs) are intracellular organelles critical for energy storage and lipid metabolism. They are typically composed of an oil core coated by a monolayer of phospholipids and proteins such as oleosins. The mechanistic details of LD biogenesis remain poorly defined. However, emerging evidence suggest that their formation is a spatiotemporally regulated process, occurring at specific sites of the endoplasmic reticulum defined by a specific set of lipids and proteins. Here, we show that sterols are required for formation of oleosin-coated LDs in Arabidopsis. Analysis of sterol pathway mutants revealed that deficiency in several ∆5-sterols accounts for the phenotype. Importantly, mutants deficient in these sterols also display reduced LD number, increased LD size and reduced oil content in seeds. Collectively, our data reveal a role of sterols in coordinating the synthesis of oil and oleosins and their assembly into LDs, highlighting the importance of membrane lipids in regulating LD biogenesis.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2447
Author(s):  
Rona Aviram ◽  
Yaarit Adamovich ◽  
Gad Asher

Circadian clocks have evolved in most light-sensitive organisms, from unicellular organisms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity, from behavior to physiology, through tissue and cellular functions to subcellular processes. Circadian rhythms in intracellular organelles are an emerging and exciting research arena. We summarize herein the current literature for rhythmicity in major intracellular organelles in mammals. These include changes in the morphology, content, and functions of different intracellular organelles. While these data highlight the presence of rhythmicity in these organelles, a gap remains in our knowledge regarding the underlying molecular mechanisms and their functional significance. Finally, we discuss the importance and challenges faced by spatio-temporal studies on these organelles and speculate on the presence of oscillators in organelles and their potential mode of communication. As circadian biology has been and continues to be studied throughout temporal and spatial axes, circadian organelles appear to be the next frontier.


Sign in / Sign up

Export Citation Format

Share Document