scholarly journals Structural Dynamics of Calmodulin using Bifunctional Spin Labels and Double Electron-Electron Resonance

2016 ◽  
Vol 110 (3) ◽  
pp. 152a
Author(s):  
Cheng Her ◽  
Christine B. Karim ◽  
David D. Thomas
2020 ◽  
Vol 1 (2) ◽  
pp. 285-299
Author(s):  
Markus Teucher ◽  
Mian Qi ◽  
Ninive Cati ◽  
Henrik Hintz ◽  
Adelheid Godt ◽  
...  

Abstract. Double electron–electron resonance (DEER) spectroscopy applied to orthogonally spin-labeled biomolecular complexes simplifies the assignment of intra- and intermolecular distances, thereby increasing the information content per sample. In fact, various spin labels can be addressed independently in DEER experiments due to spectroscopically nonoverlapping central transitions, distinct relaxation times, and/or transition moments; hence, they are referred to as spectroscopically orthogonal. Molecular complexes which are, for example, orthogonally spin-labeled with nitroxide (NO) and gadolinium (Gd) labels give access to three distinct DEER channels that are optimized to selectively probe NO–NO, NO–Gd, and Gd–Gd distances. Nevertheless, it has been previously recognized that crosstalk signals between individual DEER channels can occur, for example, when a Gd–Gd distance appears in a DEER channel optimized to detect NO–Gd distances. This is caused by residual spectral overlap between NO and Gd spins which, therefore, cannot be considered as perfectly orthogonal. Here, we present a systematic study on how to identify and suppress crosstalk signals that can appear in DEER experiments using mixtures of NO–NO, NO–Gd, and Gd–Gd molecular rulers characterized by distinct, nonoverlapping distance distributions. This study will help to correctly assign the distance peaks in homo- and heterocomplexes of biomolecules carrying not perfectly orthogonal spin labels.


2016 ◽  
Vol 18 (42) ◽  
pp. 29549-29554 ◽  
Author(s):  
Matvey V. Fedin ◽  
Georgiy Yu. Shevelev ◽  
Dmitrii V. Pyshnyi ◽  
Victor M. Tormyshev ◽  
Gunnar Jeschke ◽  
...  

We report the first experimental evidence of specific interactions between DNAs and triarylmethyl spin labels, crucial for EPR distance measurements.


2015 ◽  
Vol 17 (23) ◽  
pp. 15098-15102 ◽  
Author(s):  
Ilia Kaminker ◽  
Morgan Bye ◽  
Natanel Mendelman ◽  
Kristmann Gislason ◽  
Snorri Th. Sigurdsson ◽  
...  

W-band (95 GHz) double electron–electron resonance (DEER) distance measurements between Mn2+ and nitroxide spin labels were used to determine the location of a Mn2+ binding site within an RNA molecule.


2019 ◽  
Author(s):  
Dennis Bücker ◽  
Annika Sickinger ◽  
Julian D. Ruiz Perez ◽  
Manuel Oestringer ◽  
Stefan Mecking ◽  
...  

Synthetic polymers are mixtures of different length chains, and their chain length and chain conformation is often experimentally characterized by ensemble averages. We demonstrate that Double-Electron-Electron-Resonance (DEER) spectroscopy can reveal the chain length distribution, and chain conformation and flexibility of the individual n-mers in oligo-(9,9-dioctylfluorene) from controlled Suzuki-Miyaura Coupling Polymerization (cSMCP). The required spin-labeled chain ends were introduced efficiently via a TEMPO-substituted initiator and chain terminating agent, respectively, with an in situ catalyst system. Individual precise chain length oligomers as reference materials were obtained by a stepwise approach. Chain length distribution, chain conformation and flexibility can also be accessed within poly(fluorene) nanoparticles.


Author(s):  
Svetlana Kucher ◽  
Christina Elsner ◽  
Mariya Safonova ◽  
Stefano Maffini ◽  
Enrica Bordignon

2010 ◽  
Vol 132 (24) ◽  
pp. 8228-8229 ◽  
Author(s):  
Ryuji Igarashi ◽  
Tomomi Sakai ◽  
Hideyuki Hara ◽  
Takeshi Tenno ◽  
Toshiaki Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document