intermolecular distances
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 0)

IUCrJ ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna Olejniczak ◽  
Anna Katrusiak ◽  
Marcin Podsiadło ◽  
Andrzej Katrusiak

Partial hydration of organic compounds can be achieved by high-pressure crystallization. This has been demonstrated for the high-nitrogen-content compound 6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl), which becomes partly hydrated by isochoric crystallizations below 0.15 GPa. This hydrate, C4H2N5Cl·xH2O, is isostructural with the ambient-pressure phase α of C4H2N5Cl, but the crystal volume is somewhat larger than that of the anhydrate. At 0.20 GPa, the α-C4H2N5Cl anhydrate phase transforms abruptly into a new higher-symmetry phase, α′; the transformation is clearly visible due to a strong contraction of the crystals. The hydrate α-C4H2N5Cl·xH2O can also be isothermally compressed up to 0.30 GPa before transforming to the α′-C4H2N5Cl·xH2O phase. The isochoric recrystallization of C4H2N5Cl above 0.18 GPa yields a new anhydrous phase β, which, on releasing pressure, transforms back to the α phase below 0.15 GPa. The structural transition from the α to the β phase is destructive for the single crystal and involves a large volume drop and significant elongation of all the shortest intermolecular distances which are the CH...N and CH...Cl hydrogen bonds, as well as the N...N contacts. The α-to-α′ phase transition increases the crystal symmetry in the subgroup relation; however, there are no structural nor symmetry relations between phases α and β.



Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4245
Author(s):  
Evgenii Titov

Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest ππ* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used.



Author(s):  
Evgenii Titov

Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest ππ* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used.



2021 ◽  
Author(s):  
Diego Cortes-Arriagada ◽  
Daniela E. Ortega

Hybrid materials formed by carbon fullerenes and layered materials have emerged due to their advantages for several technological applications, and phosphorene arises as a promising two-dimensional semiconductor for C60 adsorption. However, the properties of phosphorenefullerene hybrids remain mainly unexplored. In this work, we employed density functional theory to obtain structures, adsorption energies, electronic/optical properties, binding (AIM, NBO), and energy decomposition analyses (ALMO-EDA) of nanostructures formed by phosphorene and fullerenes (C24 to C70). We find fullerenes form covalent and non-covalent complexes with phosphorene depending on the molecular size, showing remarkable stability even in solution. Two classes of covalent complexes arise by cycloaddition-like reactions: the first class, where short-range effects (charge-transfer and polarization) determines the stability; and the second one, where short-range effects decay to avoid steric repulsion, and balanced longrange forces (electrostatics and dispersion) favors the stability. Otherwise, high-size fullerenes (C50 to C70) only form non-covalent complexes due to strong repulsion at shorter intermolecular distances and lack of dissociation barriers. In terms of electronic properties, fullerenes act as mild p-dopants for phosphorene, increasing its polar character and ability to acquire induced dipole moments (polarizability). Also, small energy-bandgap fullerenes (<0.8 eV) largely increase the phosphorene metallic character. We also note fullerenes retain their donor/acceptor properties upon adsorption, acting as active sites for orbital-controlled interactions and maximizing the phosphorene light absorbance at the UV-Vis region. Finally, we strongly believe our study will inspire future experimental/theoretical studies focused on phosphorene-fullerene uses for storage, anode materials, sensing, phosphorene bandgap engineering, and optoelectronics.<br>



2021 ◽  
Author(s):  
Diego Cortes-Arriagada ◽  
Daniela E. Ortega

Hybrid materials formed by carbon fullerenes and layered materials have emerged due to their advantages for several technological applications, and phosphorene arises as a promising two-dimensional semiconductor for C60 adsorption. However, the properties of phosphorenefullerene hybrids remain mainly unexplored. In this work, we employed density functional theory to obtain structures, adsorption energies, electronic/optical properties, binding (AIM, NBO), and energy decomposition analyses (ALMO-EDA) of nanostructures formed by phosphorene and fullerenes (C24 to C70). We find fullerenes form covalent and non-covalent complexes with phosphorene depending on the molecular size, showing remarkable stability even in solution. Two classes of covalent complexes arise by cycloaddition-like reactions: the first class, where short-range effects (charge-transfer and polarization) determines the stability; and the second one, where short-range effects decay to avoid steric repulsion, and balanced longrange forces (electrostatics and dispersion) favors the stability. Otherwise, high-size fullerenes (C50 to C70) only form non-covalent complexes due to strong repulsion at shorter intermolecular distances and lack of dissociation barriers. In terms of electronic properties, fullerenes act as mild p-dopants for phosphorene, increasing its polar character and ability to acquire induced dipole moments (polarizability). Also, small energy-bandgap fullerenes (<0.8 eV) largely increase the phosphorene metallic character. We also note fullerenes retain their donor/acceptor properties upon adsorption, acting as active sites for orbital-controlled interactions and maximizing the phosphorene light absorbance at the UV-Vis region. Finally, we strongly believe our study will inspire future experimental/theoretical studies focused on phosphorene-fullerene uses for storage, anode materials, sensing, phosphorene bandgap engineering, and optoelectronics.<br>



2021 ◽  
Author(s):  
Diego Cortes-Arriagada ◽  
Daniela E. Ortega

Hybrid materials formed by carbon fullerenes and layered materials have emerged due to their advantages for several technological applications, and phosphorene arises as a promising two-dimensional semiconductor for C60 adsorption. However, the properties of phosphorenefullerene hybrids remain mainly unexplored. In this work, we employed density functional theory to obtain structures, adsorption energies, electronic/optical properties, binding (AIM, NBO), and energy decomposition analyses (ALMO-EDA) of nanostructures formed by phosphorene and fullerenes (C24 to C70). We find fullerenes form covalent and non-covalent complexes with phosphorene depending on the molecular size, showing remarkable stability even in solution. Two classes of covalent complexes arise by cycloaddition-like reactions: the first class, where short-range effects (charge-transfer and polarization) determines the stability; and the second one, where short-range effects decay to avoid steric repulsion, and balanced longrange forces (electrostatics and dispersion) favors the stability. Otherwise, high-size fullerenes (C50 to C70) only form non-covalent complexes due to strong repulsion at shorter intermolecular distances and lack of dissociation barriers. In terms of electronic properties, fullerenes act as mild p-dopants for phosphorene, increasing its polar character and ability to acquire induced dipole moments (polarizability). Also, small energy-bandgap fullerenes (<0.8 eV) largely increase the phosphorene metallic character. We also note fullerenes retain their donor/acceptor properties upon adsorption, acting as active sites for orbital-controlled interactions and maximizing the phosphorene light absorbance at the UV-Vis region. Finally, we strongly believe our study will inspire future experimental/theoretical studies focused on phosphorene-fullerene uses for storage, anode materials, sensing, phosphorene bandgap engineering, and optoelectronics.<br>



2021 ◽  
Author(s):  
Kimberly A. Carter-Fenk ◽  
Kevin Carter-Fenk ◽  
Michelle E Fiamingo ◽  
Heather Allen ◽  
John M. Herbert

<p>Surface-sensitive vibrational spectroscopy is a common tool for measuring molecular organization and intermolecular interactions at interfaces. Peak intensity ratios are typically used to extract molecular information from one-dimensional spectra but vibrational coupling between surfactant molecules can manifest as signal depletion in one-dimensional spectra. Through a combination of experiment and theory, we demonstrate the emergence of vibrational excitons in infrared reflection-absorption spectra of soluble and insoluble surfactants at the air/water interface. Vibrational coupling yields a signicant decrease in peak intensities corresponding to C-F vibrational modes of perfluorooctanoic acid molecules. Vibrational excitons also form between arachidic acid surfactants within a compressed monolayer, manifesting as signal reduction of C-H stretching modes. The aqueous phase ionic composition impacts surfactant intermolecular distances, thereby modulating vibrational coupling strength between surfactants. Our results serve as a cautionary tale against employing alkyl and fluoroalkyl vibrational peak intensities in analyses that are ubiquitous in interface science.</p>



2021 ◽  
Author(s):  
Lu Hu ◽  
Richard J. Staples ◽  
Jean’ne M. Shreeve

Hydrogen bond systems stabilize molecules and shorten intermolecular distances to give higher density and lower sensitivity.



2021 ◽  
Vol 1 (63) ◽  
pp. 88-94
Author(s):  
Jr. Dudzinskii ◽  
◽  
N. Titova ◽  
N. Manicheva ◽  
A. Zakharova ◽  
...  

An acoustic method is proposed for assessing the molecular properties of a liquid, determining the nonlinear parameter of liquids from the ratio of the first and second harmonics when the acoustic wave changes, and using this parameter to measure the internal pressure. In addition, the proposed method measures intermolecular distances for the studied liquids. In organ fluids, the effects of sound scattering and wave interaction are enhanced. In body fluids, at the molecular level, there is a small amount of microscopic bubbles. This leads to the appearance of the phenomenon of cavitation. These phenomena can be harmful, but not always. There are devices for biological and pharmaceutical technologies, medical devices that successfully use these effects. The paper presents a functional diagram of the experiment, identifies the oscillograms of acoustic signals of finite amplitude at different distances from the emitter. The same devices based on quartz plates 25 mm in diameter with a resonance frequency of 3 MHz were used as the emitter and receiver. This difference of approximately three times the resonance frequencies of the sensors and the acoustic signal ensures the linearity of the amplitude-frequency response of both sensors. Nonlinear acoustic methods are a global trend in biomedical research, as they open up new opportunities and prospects in the development of medical devices. The appearance of higher harmonics in the curvature of the initial harmonic wave of finite amplitude can be used for express analysis of the physical properties of pure liquids and especially aqueous solutions of organic substances. This method of experimental determination of the nonlinear parameter and internal pressure in a liquid is more convenient than the static one, since it does not require the use of high excess static pressures. The proposed acoustic method gives less error than the dynamic one. The accuracy of such a determination can be sufficient to judge the change in the intermolecular interaction in liquids.



2020 ◽  
Vol 6 (12) ◽  
pp. 274-280
Author(s):  
T. Ibraimov ◽  
Y. Tashpolotov

The state and prospects of development of production of composites based on various types of multicomponent raw materials (silicon oxide, slag, etc.) and their components are considered. Modern achievements in the field of condensed matter physics of composite materials with mineral matrices and various dimensional levels of fillers are considered. The approaches of leading scientific schools to the creation of composites are analyzed; it is revealed that many issues of obtaining multicomponent composite materials remain open. It is concluded that the optimization of the process of obtaining composites based on multicomponent raw materials should be carried out by changing the target functions and parameters that take into account all types of interaction of components. A method for selecting mineral matrices for the production of composite materials has been developed, the essence of which is to compare the component compositions of raw materials and composite materials, and the search for matrices is performed by the maximum optimal value of intermolecular distances in multicomponent raw materials and composite materials.



Sign in / Sign up

Export Citation Format

Share Document