scholarly journals Ramachandran Map Analysis of the Monomeric Aβ 1-40 and Aβ 1-42 Peptides by Solution NMR

2017 ◽  
Vol 112 (3) ◽  
pp. 481a
Author(s):  
Julien Roche
2017 ◽  
Author(s):  
Natalia Sizochenko ◽  
Alicja Mikolajczyk ◽  
Karolina Jagiello ◽  
Tomasz Puzyn ◽  
Jerzy Leszczynski ◽  
...  

Application of predictive modeling approaches is able solve the problem of the missing data. There are a lot of studies that investigate the effects of missing values on qualitative or quantitative modeling, but only few publications have been<br>discussing it in case of applications to nanotechnology related data. Current project aimed at the development of multi-nano-read-across modeling technique that helps in predicting the toxicity of different species: bacteria, algae, protozoa, and mammalian cell lines. In this study, the experimental toxicity for 184 metal- and silica oxides (30 unique chemical types) nanoparticles from 15 experimental datasets was analyzed. A hybrid quantitative multi-nano-read-across approach that combines interspecies correlation analysis and self-organizing map analysis was developed. At the first step, hidden patterns of toxicity among the nanoparticles were identified using a combination of methods. Then the developed model that based on categorization of metal oxide nanoparticles’ toxicity outcomes was evaluated by means of combination of supervised and unsupervised machine learning techniques to find underlying factors responsible for toxicity.


2017 ◽  
Author(s):  
Natalia Sizochenko ◽  
Alicja Mikolajczyk ◽  
Karolina Jagiello ◽  
Tomasz Puzyn ◽  
Jerzy Leszczynski ◽  
...  

Application of predictive modeling approaches is able solve the problem of the missing data. There are a lot of studies that investigate the effects of missing values on qualitative or quantitative modeling, but only few publications have been<br>discussing it in case of applications to nanotechnology related data. Current project aimed at the development of multi-nano-read-across modeling technique that helps in predicting the toxicity of different species: bacteria, algae, protozoa, and mammalian cell lines. In this study, the experimental toxicity for 184 metal- and silica oxides (30 unique chemical types) nanoparticles from 15 experimental datasets was analyzed. A hybrid quantitative multi-nano-read-across approach that combines interspecies correlation analysis and self-organizing map analysis was developed. At the first step, hidden patterns of toxicity among the nanoparticles were identified using a combination of methods. Then the developed model that based on categorization of metal oxide nanoparticles’ toxicity outcomes was evaluated by means of combination of supervised and unsupervised machine learning techniques to find underlying factors responsible for toxicity.


2018 ◽  
Vol 69 (7) ◽  
pp. 1838-1841
Author(s):  
Hajnal Kelemen ◽  
Angella Csillag ◽  
Bela Noszal ◽  
Gabor Orgovan

Ezetimibe, the antihyperlipidemic drug of poor bioavailability was complexed with native and derivatized cyclodextrins.The complexes were characterized in terms stability, stoichiometry and structure using various 1D and 2D solution NMR spectroscopic techniques. The complexes were found to be of moderate stability (logK[3). The least stable inclusion complex is formed with b-cyclodextrin, while the ezetimibe-methylated-b--cyclodextrin has a 7-fold higher stability. The results can be useful to improve the poor water-solubility and the concomitant bioavailability of ezetimibe.


2019 ◽  
Vol 26 (6) ◽  
pp. 449-457
Author(s):  
Ting Song ◽  
Keke Cao ◽  
Yu dan Fan ◽  
Zhichao Zhang ◽  
Zong W. Guo ◽  
...  

Background: The significance of multi-site phosphorylation of BCL-2 protein in the flexible loop domain remains controversial, in part due to the lack of structural biology studies of phosphorylated BCL-2. Objective: The purpose of the study is to explore the phosphorylation induced structural changes of BCL-2 protein. Methods: We constructed a phosphomietic mutant BCL-2(62-206) (t69e, s70e and s87e) (EEEBCL- 2-EK (62-206)), in which the BH4 domain and the part of loop region was truncated (residues 2-61) to enable a backbone resonance assignment. The phosphorylation-induced structural change was visualized by overlapping a well dispersed 15N-1H heteronuclear single quantum coherence (HSQC) NMR spectroscopy between EEE-BCL-2-EK (62-206) and BCL-2. Results: The EEE-BCL-2-EK (62-206) protein reproduced the biochemical and cellular activity of the native phosphorylated BCL-2 (pBCL-2), which was distinct from non-phosphorylated BCL-2 (npBCL-2) protein. Some residues in BH3 binding groove occurred chemical shift in the EEEBCL- 2-EK (62-206) spectrum, indicating that the phosphorylation in the loop region induces a structural change of active site. Conclusion: The phosphorylation of BCL-2 induced structural change in BH3 binding groove.


2021 ◽  
pp. 166977
Author(s):  
Colleen Kelly ◽  
Nicola Pace ◽  
Matthew Gage ◽  
Mark Pfuhl

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 60
Author(s):  
David A. Armstrong ◽  
Ai-Hua Jin ◽  
Nayara Braga Emidio ◽  
Richard J. Lewis ◽  
Paul F. Alewood ◽  
...  

Conotoxins are disulfide-rich peptides found in the venom of cone snails. Due to their exquisite potency and high selectivity for a wide range of voltage and ligand gated ion channels they are attractive drug leads in neuropharmacology. Recently, cone snails were found to have the capability to rapidly switch between venom types with different proteome profiles in response to predatory or defensive stimuli. A novel conotoxin, GXIA (original name G117), belonging to the I3-subfamily was identified as the major component of the predatory venom of piscivorous Conus geographus. Using 2D solution NMR spectroscopy techniques, we resolved the 3D structure for GXIA, the first structure reported for the I3-subfamily and framework XI family. The 32 amino acid peptide is comprised of eight cysteine residues with the resultant disulfide connectivity forming an ICK+1 motif. With a triple stranded β-sheet, the GXIA backbone shows striking similarity to several tarantula toxins targeting the voltage sensor of voltage gated potassium and sodium channels. Supported by an amphipathic surface, the structural evidence suggests that GXIA is able to embed in the membrane and bind to the voltage sensor domain of a putative ion channel target.


Sign in / Sign up

Export Citation Format

Share Document