scholarly journals Super-Resolution Microscopy Reveals the Molecular Architecture of Centriole Subdistal Appendages and Its Role in Microtubule/Golgi Anchoring

2019 ◽  
Vol 116 (3) ◽  
pp. 133a
Author(s):  
Weng Man Chong ◽  
T Tony Yang ◽  
Jung-Chi Liao
2015 ◽  
Vol 128 (20) ◽  
pp. 3714-3719 ◽  
Author(s):  
L. Nahidiazar ◽  
M. Kreft ◽  
B. van den Broek ◽  
P. Secades ◽  
E. M. M. Manders ◽  
...  

2021 ◽  
pp. mbc.E20-11-0728
Author(s):  
Vilma Jimenez Sabinina ◽  
M. Julius Hossain ◽  
Jean-Karim Hériché ◽  
Philipp Hoess ◽  
Bianca Nijmeijer ◽  
...  

Nuclear pore complexes (NPCs) are large macromolecular machines that mediate the traffic between the nucleus and the cytoplasm. In vertebrates, each NPC consists of ∼1000 proteins, termed nucleoporins, and has a mass of over 100 MDa. While a pseudo-atomic static model of the central scaffold of the NPC has recently been assembled by integrating data from isolated proteins and complexes, many structural components still remain elusive due to the enormous size and flexibility of the NPC. Here, we explored the power of 3D super-resolution microscopy combined with computational classification and averaging to explore the 3D structure of the NPC in single human cells. We show that this approach can build the first integrated 3D structural map containing both central as well as peripheral NPC subunits with molecular specificity and nanoscale resolution. Our unbiased classification of over ten thousand individual NPCs indicates that the nuclear ring and the nuclear basket can adopt different conformations. Our approach opens up the exciting possibility to relate different structural states of the NPC to function in situ.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Nathan A McDonald ◽  
Abigail L Lind ◽  
Sarah E Smith ◽  
Rong Li ◽  
Kathleen L Gould

The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.


2020 ◽  
Author(s):  
Vilma Jimenez Sabinina ◽  
M. Julius Hossain ◽  
Jean-Karim Hériché ◽  
Philipp Hoess ◽  
Bianca Nijmeijer ◽  
...  

AbstractNuclear pore complexes (NPCs) are large macromolecular machines that mediate the traffic between the nucleus and the cytoplasm. In vertebrates, each NPC consists of ∼1000 proteins, termed nucleoporins, and has a mass of over 100 MDa. While a pseudo-atomic static model of the central scaffold of the NPC has recently been assembled by integrating data from isolated proteins and complexes, many structural components still remain elusive due to the enormous size and flexibility of the NPC. Here, we explored the power of 3D super-resolution microscopy combined with computational classification and averaging to explore the 3D structure of the NPC in single human cells. We show that this approach can build the first integrated 3D structural map containing both central as well as peripheral NPC subunits with molecular specificity and nanoscale resolution. Our unbiased classification of over ten thousand individual NPCs indicates that the nuclear ring and the nuclear basket can adopt different conformations. Our approach opens up the exciting possibility to relate different structural states of the NPC to function in situ.


Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 42-51
Author(s):  
S. S. Ryabichko ◽  
◽  
A. N. Ibragimov ◽  
L. A. Lebedeva ◽  
E. N. Kozlov ◽  
...  

2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


Sign in / Sign up

Export Citation Format

Share Document