unit cell size
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 35)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Günther J. Redhammer ◽  
Gerold Tippelt ◽  
Daniel Rettenwander

Single crystals of an Li-stuffed, Al- and Ga-stabilized garnet-type solid-state electrolyte material, Li7La3Zr2O12 (LLZO), have been analysed using single-crystal X-ray diffraction to determine the pristine structural state immediately after synthesis via ceramic sintering techniques. Hydrothermal treatment at 150 °C for 28 d induces a phase transition in the Al-stabilized compound from the commonly observed cubic Ia\overline{3}d structure to the acentric I\overline{4}3d subtype. LiI ions at the interstitial octahedrally (4 + 2-fold) coordinated 48e site are most easily extracted and AlIII ions order onto the tetrahedral 12a site. Deep hydration induces a distinct depletion of LiI at this site, while the second tetrahedral site, 12b, suffers only minor LiI loss. Charge balance is maintained by the incorporation of HI, which is bonded to an O atom. Hydration of Ga-stabilized LLZO induces similar effects, with complete depletion of LiI at the 48e site. The LiI/HI exchange not only leads to a distinct increase in the unit-cell size, but also alters some bonding topology, which is discussed here.


Author(s):  
Myungwon Hwang ◽  
Andres F Arrieta

Abstract In this paper, we present an input-independent energy harvesting mechanism exploiting topological waves. Transition waves in discrete bistable lattices entail energy radiation in the form of trailing phonons. We observe numerically and experimentally that the most dominant frequencies of these phonons are invariant to the details of the input excitations as long as transition waves are generated. Most of the phonon energy at each unit cell is clustered around a single invariant frequency, enabling input-independent resonant energy transduction. An electromagnetic conversion mechanism is implemented to demonstrate that bistable lattices behave as generators of fixed-frequency electrical sources upon transition wave propagation. The presented mechanism fundamentally breaks the link between the unit cell size and the metamaterial’s operating frequencies, offering a broadband solution to energy harvesting, particularly robust for low-frequency input sources. We also investigate the effect of lattice discreteness on the energy harvesting potential, observing two performance gaps and a topological wave harvesting pass band where the potential for energy conversion increases almost monotonically. The observed frequency-invariant phonons are intrinsic to the discrete bistable lattices, enabling broadband energy harvesting to be an inherent metamaterial property.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1063 ◽  
Author(s):  
Roman Minikayev ◽  
Fatemeh Safari ◽  
Andrzej Katrusiak ◽  
Wojciech Szuszkiewicz ◽  
Andrzej Szczerbakow ◽  
...  

Rocksalt-type (Pb,Cd)Te belongs to IV–VI semiconductors exhibiting thermoelectric properties. With the aim of understanding of the influence of Cd substitution in PbTe on thermostructural and elastic properties, we studied PbTe and Pb0.884Cd0.116Te (i) at low temperatures (15 to 300 K) and (ii) at high pressures within the stability range of NaCl-type PbTe (up to 4.5 GPa). For crystal structure studies, powder and single crystal X-ray diffraction methods were used. Modeling of the data included the second-order Grüneisen approximation of the unit-cell-volume variation, V(T), the Debye expression describing the mean square atomic displacements (MSDs), <u2>(T), and Birch–Murnaghan equation of state (BMEOS). The fitting of the temperature-dependent diffraction data provided model variations of lattice parameter, the thermal expansion coefficient, and MSDs with temperature. A comparison of the MSD runs simulated for the PbTe and mixed (Pb,Cd)Te crystal leads to the confirmation of recent findings that the cation displacements are little affected by Cd substitution at the Pb site; whereas the Te displacements are markedly higher for the mixed crystal. Moreover, information about static disorder caused by Cd substitution is obtained. The calculations provided two independent ways to determine the values of the overall Debye temperature, θD. The resulting values differ only marginally, by no more than 1 K for PbTe and 7 K for Pb0.884Cd0.116Te crystals. The θD values for the cationic and anionic sublattices were determined. The Grüneisen parameter is found to be nearly independent of temperature. The variations of unit-cell size with rising pressure (the NaCl structure of Pb0.884Cd0.116Te sample was conserved), modeled with the BMEOS, provided the dependencies of the bulk modulus, K, on pressure for both crystals. The K0 value is 45.6(2.5) GPa for PbTe, whereas that for Pb0.884Cd0.116Te is significantly reduced, 33.5(2.8) GPa, showing that the lattice with fractional Cd substitution is less stiff than that of pure PbTe. The obtained experimental values of θD and K0 for Pb0.884Cd0.116Te are in line with the trends described in recently reported theoretical study for (Pb,Cd)Te mixed crystals.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1440-1442
Author(s):  
Debangshu Mukherjee ◽  
Haoran Yu ◽  
Chenyu Wang ◽  
Jacob Spendelow ◽  
David Cullen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4215
Author(s):  
Hiromi Kimura ◽  
Go Fuseya ◽  
Satoshi Takeya ◽  
Akihiro Hachikubo

Knowledge of carbon isotope fractionation is needed in order to discuss the formation and dissociation of naturally occurring CO2 hydrates. We investigated carbon isotope fractionation during CO2 hydrate formation and measured the three-phase equilibria of 12CO2–H2O and 13CO2–H2O systems. From a crystal structure viewpoint, the difference in the Raman spectra of hydrate-bound 12CO2 and 13CO2 was revealed, although their unit cell size was similar. The δ13C of hydrate-bound CO2 was lower than that of the residual CO2 (1.0–1.5‰) in a formation temperature ranging between 226 K and 278 K. The results show that the small difference between equilibrium pressures of ~0.01 MPa in 12CO2 and 13CO2 hydrates causes carbon isotope fractionation of ~1‰. However, the difference between equilibrium pressures in the 12CO2–H2O and 13CO2–H2O systems was smaller than the standard uncertainties of measurement; more accurate pressure measurement is required for quantitative discussion.


2021 ◽  
Vol 22 (2) ◽  
pp. 341-344
Author(s):  
Handan Özlü Torun

CeY0.15Er0.05O2 nanocrystal powders prepared via sol-gel method. Phases identification have been made X-ray diffraction, SEM-EDX, FTIR, thermal and impedance analysis. XRD data show that all powders were obtained with cubic fluorite structure. With the increase of sintering temperature, the unit cell size decreased and the crystal size increased. The particle size was found to be in the range of 150 to 270 nm. It was found that the nitrates and organic species seen in the FTIR results. It was observed that organic species disappeared at sintering temperatures selected according to thermal analysis results. Impedance measurements of the pelletized sample were made. Although the crystal structure properties were good, it was found that the conductivity values were low.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Carl E. Belle ◽  
Vural Aksakalli ◽  
Salvy P. Russo

AbstractFor photovoltaic materials, properties such as band gap $$E_{g}$$ E g are critical indicators of the material’s suitability to perform a desired function. Calculating $$E_{g}$$ E g is often performed using Density Functional Theory (DFT) methods, although more accurate calculation are performed using methods such as the GW approximation. DFT software often used to compute electronic properties includes applications such as VASP, CRYSTAL, CASTEP or Quantum Espresso. Depending on the unit cell size and symmetry of the material, these calculations can be computationally expensive. In this study, we present a new machine learning platform for the accurate prediction of properties such as $$E_{g}$$ E g of a wide range of materials.


2021 ◽  

<p>The calcined clam seashell powders were applied as adsorbent to adsorb Dibutyl phthalate (DBP), from an aqueous solution. The influence of calcination conditions including temperature and time on its adsorption capability to DBP was investigated. The shell powders calcined at 500 oC had the best adsorption capability. As the calcination time extending under different temperatures, the adsorption capabilities showed the same tendency and reached peak values at the calcination time of 10mins. Calcination time extension also led to the increase of crystal unit cell Sizes of CaCO3 inside the clam seashells at the first 10mins and then decreased to the stable value, Correspondingly, the calcined shell specific surface areas decreased firstly to the minimum at 10mins and then gradually increased, as the calcination process lasting at 500oC. The maximum adsorption capability as 1.237mg/g, the lowest specific surface area as 14.2m2/g, and the largest unit cell size as 60.7nm of CaCO3 simultaneously exhibited at the calcination time of 10mins. The Freundlich isotherm model and the pseudo-second-order-kinetics model were appropriate for describing the adsorption isotherm and kinetics of DBP at 30oC, respectively. It is inferred that the interaction between calcined shell and DBP is chemical adsorption.</p>


2021 ◽  
Vol 27 (5) ◽  
pp. 1-16
Author(s):  
Hema Omer Ali ◽  
Asaad M. Al-Hindawi

In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorptions. To analyze the proposed design, electromagnetic parameters such as permittivity  permeability  reflective index , and impedance  were extracted and presented. The structure's working principle is analyzed and illustrated through input impedance, surface current, and the electric field of the structure. The proposed absorber compared with the recent MMA presented in the literature. The obtained results indicated that the proposed absorber has the widest bandwidth with the highest absorption value. According to these results, the proposed metamaterials absorber is a good candidate for RADAR applications.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1366 ◽  
Author(s):  
Hafizur Rahman ◽  
Ebrahim Yarali ◽  
Ali Zolfagharian ◽  
Ahmad Serjouei ◽  
Mahdi Bodaghi

Today, the rational combination of materials and design has enabled the development of bio-inspired lattice structures with unprecedented properties to mimic biological features. The present study aims to investigate the mechanical performance and energy absorption capacity of such sophisticated hybrid soft–hard structures with gradient lattices. The structures are designed based on the diversity of materials and graded size of the unit cells. By changing the unit cell size and arrangement, five different graded lattice structures with various relative densities made of soft and hard materials are numerically investigated. The simulations are implemented using ANSYS finite element modeling (FEM) (2020 R1, 2020, ANSYS Inc., Canonsburg, PA, USA) considering elastic-plastic and the hardening behavior of the materials and geometrical non-linearity. The numerical results are validated against experimental data on three-dimensional (3D)-printed lattices revealing the high accuracy of the FEM. Then, by combination of the dissimilar soft and hard polymeric materials in a homogenous hexagonal lattice structure, two dual-material mechanical lattice statures are designed, and their mechanical performance and energy absorption are studied. The results reveal that not only gradual changes in the unit cell size provide more energy absorption and improve mechanical performance, but also the rational combination of soft and hard materials make the lattice structure with the maximum energy absorption and stiffness, in comparison to those structures with a single material, interesting for multi-functional applications.


Sign in / Sign up

Export Citation Format

Share Document