scholarly journals Structural and Functional Characterization of Periplasmic Sialic Acid Binding Proteins from Pathogenic Bacteria

2019 ◽  
Vol 116 (3) ◽  
pp. 151a
Author(s):  
Thanuja Gangi Setty ◽  
S. Ramaswamy
2019 ◽  
Vol 75 (6) ◽  
pp. 564-577
Author(s):  
Sucharita Bose ◽  
Debayan Purkait ◽  
Deepthi Joseph ◽  
Vinod Nayak ◽  
Ramaswamy Subramanian

Several pathogenic bacteria utilize sialic acid, including host-derivedN-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, includingNeisseria meningitidis,Haemophilus influenzae,Pasteurella multocidaandVibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, fromVibrio choleraeare reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure ofV. choleraeCMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process.


2014 ◽  
Vol 458 (3) ◽  
pp. 499-511 ◽  
Author(s):  
Chatchawal Phansopa ◽  
Sumita Roy ◽  
John B. Rafferty ◽  
C. W. Ian Douglas ◽  
Jagroop Pandhal ◽  
...  

We biochemically and structurally characterize a novel inducible surface-associated sialic acid-binding protein present in human-dwelling Bacteroidetes species that represents a novel type of sialic acid-specific polysaccharide utilization locus.


Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06427
Author(s):  
Haixia Zhan ◽  
Du Li ◽  
Youssef Dewer ◽  
Changying Niu ◽  
Fengqi Li ◽  
...  

1998 ◽  
Vol 253 (2) ◽  
pp. 489-494 ◽  
Author(s):  
Jonathan Bohbot ◽  
Franck Sobrio ◽  
Philippe Lucas ◽  
Patricia Nagnan-Le Meillour

2014 ◽  
Vol 30 (S1) ◽  
pp. A119-A120
Author(s):  
Hung V. Trinh ◽  
Ousman Jobe ◽  
Guofen Gao ◽  
Carl R. Alving ◽  
Venigalla Rao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document