Working memory performance inversely predicts spontaneous delta and theta-band scaling relations

2016 ◽  
Vol 1637 ◽  
pp. 22-33 ◽  
Author(s):  
Matthew J. Euler ◽  
Travis J. Wiltshire ◽  
Madison A. Niermeyer ◽  
Jonathan E. Butner
2021 ◽  
pp. 095679762110130
Author(s):  
Ulrich Pomper ◽  
Ulrich Ansorge

Representations held in working memory are crucial in guiding human attention in a goal-directed fashion. Currently, it is debated whether only a single representation or several of these representations can be active and bias behavior at any given moment. In the present study, 25 university students performed a behavioral dense-sampling experiment to produce an estimate of the temporal-activation patterns of two simultaneously held visual templates. We report two key novel results. First, performance related to both representations was not continuous but fluctuated rhythmically at 6 Hz. This corresponds to neural oscillations in the theta band, the functional importance of which in working memory is well established. Second, our findings suggest that two concurrently held representations may be prioritized in alternation, not simultaneously. Our data extend recent research on rhythmic sampling of external information by demonstrating an analogous mechanism in the cyclic activation of internal working memory representations.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Julie Sato ◽  
Sarah I. Mossad ◽  
Simeon M. Wong ◽  
Benjamin A. E. Hunt ◽  
Benjamin T. Dunkley ◽  
...  

Abstract Children born very preterm (VPT) often demonstrate selective difficulties in working memory (WM), which may underlie academic difficulties observed in this population. Despite this, few studies have investigated the functional networks underlying WM in young children born VPT, a period when cognitive deficits become apparent. Using magnetoencephalography, we examined the networks underlying the maintenance of visual information in 6-year-old VPT (n = 15) and full-term (FT; n = 20) children. Although task performance was similar, VPT children engaged different oscillatory mechanisms during WM maintenance. Within the FT group, we observed higher mean whole-brain connectivity in the alpha-band during the retention (i.e. maintenance) interval associated with correct compared to incorrect responses. VPT children showed reduced whole-brain alpha synchrony, and a different network organization with fewer connections. In the theta-band, VPT children demonstrated a slight increase in whole-brain connectivity during WM maintenance, and engaged similar network hubs as FT children in the alpha-band, including the left dorsolateral prefrontal cortex and superior temporal gyrus. These findings suggest that VPT children rely on the theta-band to support similar task performance. Altered oscillatory mechanisms may reflect a less mature pattern of functional recruitment underlying WM in VPT children, which may affect the processing in complex ecological situations.


Author(s):  
Ian Neath ◽  
Jean Saint-Aubin ◽  
Tamra J. Bireta ◽  
Andrew J. Gabel ◽  
Chelsea G. Hudson ◽  
...  

2012 ◽  
Author(s):  
Jaclyn Jansen ◽  
Gabriella Dimotsantos ◽  
Marian E. Berryhill

2019 ◽  
Author(s):  
Ashley DiPuma ◽  
Kelly Rivera ◽  
Edward Ester

Working memory (WM) performance can be improved by an informative cue presented during storage. This effect, termed a retro-cue benefit, can be used to explore mechanisms of attentional prioritization in WM. Directing attention to a single item stored in memory is known to increase memory precision while decreasing the likelihood of incorrect item reports and random guesses, but it is unclear whether similar benefits manifest when participants direct attention to multiple items stored in memory. We tested this possibility by quantifying memory performance when participants were cued to prioritize one or two items stored in working memory. Consistent with prior work, cueing participants to prioritize a single memory item yielded higher recall precision, fewer swap errors, and fewer guesses relative to a neutral cue condition. Conversely, cueing participants to prioritize two memory items yielded fewer swap errors relative to a neutral condition, but no differences in recall precision or guess rates. Although swap rates were less likely during the cue-two vs. neutral conditions, planned comparisons revealed that when participants made swap errors during cue-two trials they were far more likely to confuse two prioritized stimuli than they were to confuse a prioritized stimulus vs. a non-prioritized stimulus. Our results suggest that it is possible to prioritize multiple items stored in memory, with the caveat that doing so may increase the probability of confusing prioritized items.


2018 ◽  
Author(s):  
Anthony Paul Zanesco ◽  
Ekaterina Denkova ◽  
Scott L. Rogers ◽  
William K. MacNulty ◽  
Amishi P. Jha

Cognitive ability is a key selection criterion for entry into many elite professions. Herein, we investigate whether mindfulness training (MT) can enhance cognitive performance in elite military forces. The cognitive effects of a short-form 8-hour MT program contextualized for military cohorts, referred to as Mindfulness-Based Attention Training (MBAT), were assessed. Servicemembers received either a 2-week (n = 40) or 4-week (n = 36) version of MBAT, or no training (NTC, n = 44). Sustained attention and working memory task performance along with self-reported cognitive failures were assessed at study onset (T1) and 8-weeks later (T2). In contrast to both the NTC and 2-week MT groups, the 4-week MT group significantly improved over time on attention and working memory outcome measures. Among the 4-week more so than the 2-week MBAT participants, working memory performance improvements were correlated with their amount of out-of-class MT practice. In addition to these group-wise effects, all participants receiving MBAT decreased in their self-reported cognitive failures from T1 to T2. Importantly, none of these improvements were related to self-reported task motivation. Together, these results suggest that short-form MT, when delivered over a 4-week delivery schedule, may be an effective cognitive training tool in elite military cohorts.


Sign in / Sign up

Export Citation Format

Share Document