Transient receptor potential vanilloid 4 is involved in the upregulation of connexin expression following pilocarpine-induced status epilepticus in mice

2019 ◽  
Vol 152 ◽  
pp. 128-133 ◽  
Author(s):  
Chen Men ◽  
Zhouqing Wang ◽  
Li Zhou ◽  
Mengwen Qi ◽  
Dong An ◽  
...  
2021 ◽  
Author(s):  
Dong An ◽  
Xiuting Qi ◽  
Kunpeng Li ◽  
Weixing Xu ◽  
Yue Wang ◽  
...  

Abstract The blockage of transient receptor potential vanilloid 4 (TRPV4) greatly reduces hippocampal neuronal injury in mice with temporal lobe epilepsy through inhibiting inflammation. NF-κB signaling pathway is activated during epilepsy, leading to enhanced inflammation and neuronal injury. Here, we explored whether TRPV4 blockage could affect the NF-κB pathway in mice with pilocarpine-induced status epilepticus (PISE). Application of a TRPV4 antagonist markedly attenuated the PISE-induced increase in hippocampal HMGB1, TLR4, phospho (p)-IκK (p-IκK), and p-IκBα protein levels, as well as those of cytoplasmic p-NF-κB p65 (p-p65) and nuclear NF-κB p65 and p50; in contrast, the application of GSK1016790A, a TRPV4 agonist, showed similar changes to PISE mice. Administration of the TLR4 antagonist TAK-242 or the NF-κB pathway inhibitor BAY 11-7082 led to a noticeable reduction in the hippocampal protein levels of cleaved IL-1β, IL-6 and TNF, as well as those of cytoplasmic p-p65 and nuclear p65 and p50 in GSK1016790A-injected mice. Finally, administration of either TAK-242 or BAY 11-7082 greatly increased neuronal survival in hippocampal CA1 and CA2/3 regions in GSK1016790A-injected mice. We conclude that TRPV4 activation increases HMGB1 and TLR4 expression, leading to IκK and IκBα phosphorylation and, consequently, NF-κB activation and nuclear translocation. The resulting increase in pro-inflammatory cytokine production is responsible for TRPV4 activation-induced neuronal injury. Meanwhile, blocking TRPV4 can downregulate HMGB1/TLR4/IκK/κBα/NF-κB signaling following PISE onset, an effect that may underlie the neuroprotective ability of TRPV4 blockage in mice with PISE.


Sign in / Sign up

Export Citation Format

Share Document