scholarly journals The Nuclear Factor-Kappa B Signaling Pathway is Involved in Transient Receptor Potential Vanilloid 4-Mediated Inflammatory Responses and Neuronal Death in Mice with Pilocarpine-Induced Status Epilepticus

Author(s):  
Dong An ◽  
Xiuting Qi ◽  
Kunpeng Li ◽  
Weixing Xu ◽  
Yue Wang ◽  
...  

Abstract The blockage of transient receptor potential vanilloid 4 (TRPV4) greatly reduces hippocampal neuronal injury in mice with temporal lobe epilepsy through inhibiting inflammation. NF-κB signaling pathway is activated during epilepsy, leading to enhanced inflammation and neuronal injury. Here, we explored whether TRPV4 blockage could affect the NF-κB pathway in mice with pilocarpine-induced status epilepticus (PISE). Application of a TRPV4 antagonist markedly attenuated the PISE-induced increase in hippocampal HMGB1, TLR4, phospho (p)-IκK (p-IκK), and p-IκBα protein levels, as well as those of cytoplasmic p-NF-κB p65 (p-p65) and nuclear NF-κB p65 and p50; in contrast, the application of GSK1016790A, a TRPV4 agonist, showed similar changes to PISE mice. Administration of the TLR4 antagonist TAK-242 or the NF-κB pathway inhibitor BAY 11-7082 led to a noticeable reduction in the hippocampal protein levels of cleaved IL-1β, IL-6 and TNF, as well as those of cytoplasmic p-p65 and nuclear p65 and p50 in GSK1016790A-injected mice. Finally, administration of either TAK-242 or BAY 11-7082 greatly increased neuronal survival in hippocampal CA1 and CA2/3 regions in GSK1016790A-injected mice. We conclude that TRPV4 activation increases HMGB1 and TLR4 expression, leading to IκK and IκBα phosphorylation and, consequently, NF-κB activation and nuclear translocation. The resulting increase in pro-inflammatory cytokine production is responsible for TRPV4 activation-induced neuronal injury. Meanwhile, blocking TRPV4 can downregulate HMGB1/TLR4/IκK/κBα/NF-κB signaling following PISE onset, an effect that may underlie the neuroprotective ability of TRPV4 blockage in mice with PISE.

2018 ◽  
Vol 45 (3) ◽  
pp. 1084-1096 ◽  
Author(s):  
Mengwen Qi ◽  
Chunfeng Wu ◽  
Zhouqing Wang ◽  
Li Zhou ◽  
Chen Men ◽  
...  

Background/Aims: Glycine plays an important role in regulating hippocampal inhibitory/ excitatory neurotransmission through activating glycine receptors (GlyRs) and acting as a co-agonist of N-methyl-d-aspartate-type glutamate receptors. Activation of transient receptor potential vanilloid 4 (TRPV4) is reported to inhibit hippocampal A-type γ-aminobutyric acid receptor, a ligand-gated chloride ion channel. GlyRs are also ligand-gated chloride ion channels and this paper aimed to explore whether activation of TRPV4 could modulate GlyRs. Methods: Whole-cell patch clamp recording was employed to record glycine-activated current (IGly) and Western blot was conducted to assess GlyRs subunits protein expression. Results: Application of TRPV4 agonist (GSK1016790A or 5,6-EET) increased IGly in mouse hippocampal CA1 pyramidal neurons. This action was blocked by specific antagonists of TRPV4 (RN-1734 or HC-067047) and GlyR (strychnine), indicating that activation of TRPV4 increases strychnine-sensitive GlyR function in mouse hippocampal pyramidal neurons. GSK1016790A-induced increase in IGly was significantly attenuated by protein kinase C (PKC) (BIM II or D-sphingosine) or calcium/calmodulin-dependent protein kinase II (CaMKII) (KN-62 or KN-93) antagonists but was unaffected by protein kinase A or protein tyrosine kinase antagonists. Finally, hippocampal protein levels of GlyR α1 α2, α3 and β subunits were not changed by treatment with GSK1016790A for 30 min or 1 h, but GlyR α2, α3 and β subunits protein levels increased in mice that were intracerebroventricularly (icv.) injected with GSK1016790A for 5 d. Conclusion: Activation of TRPV4 increases GlyR function and expression, and PKC and CaMKII signaling pathways are involved in TRPV4 activation-induced increase in IGly. This study indicates that GlyRs may be effective targets for TRPV4-induced modulation of hippocampal inhibitory neurotransmission.


2021 ◽  
Author(s):  
Kyosuke Hattori ◽  
Nobunori Takahashi ◽  
Kenya Terabe ◽  
Yoshifumi Ohashi ◽  
Kenji Kishimoto ◽  
...  

Abstract Transient receptor potential vanilloid 4 (TRPV4) plays an important role in chondrocytes via Ca2+ signaling. However, its role in the progression of osteoarthritis is unclear. This study aimed to evaluate the effects of TRPV4 activation on articular cartilage and chondrocytes stimulated with interleukin (IL)-1β. Bovine and human articular chondrocytes were stimulated with various agents, including IL-1β, GSK1016790A (GSK101; a TRPV4 agonist), Compound C (an AMP-activated protein kinase (AMPK) inhibitor), and STO-609 (a calmodulin-dependent protein kinase kinase (CaMKK) inhibitor), and were processed for Western blot analysis and real-time PCR. The dimethylmethylene blue (DMMB) assay and Safranin O staining were also performed. GSK101 reversed the IL-1β-induced increase in expression of matrix metalloproteinase (MMP)-13 and decrease in expression of aggrecan. GSK101 also decreased proteoglycan release in the DMMB assay and retained Safranin O staining of articular cartilage tissue. Furthermore, GSK101 increased AMPK phosphorylation and decreased IL-1β-induced nuclear factor kappa B (NF-κB) phosphorylation. Compound C and STO-609 reversed the suppressive effects of GSK101 on NF-κB activation and MMP-13 expression. In conclusion, TRPV4 activation had chondroprotective effects on articular cartilage stimulated with IL-1β by activating CaMKK/AMPK and suppressing the NF-κB pathway. TRPV activators may offer a promising therapeutic option for preventing the progression of osteoarthritis.


2020 ◽  
Author(s):  
Yaping Yue ◽  
Na Wang ◽  
Yanming Lau ◽  
Yiran Fu ◽  
Hao Li ◽  
...  

Abstract Background: Activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3), transient receptor potential vanilloid type 1 (TRPV1), and transient receptor potential ankyrin 1 (TRPA1) by their specific ligands is a major mechanism contributing to magnified pain responses. The relationship between these nonselective cation channels and proteinase-activated receptor 2 (PAR2) activation mediated pain is still to be clarified.Methods: In this study, both in vitro model of dorsal root ganglion (DRG) neurons with PAR2 agonist SL-NH2 challenge and SL-NH2-induced pain rat model were used to approach these questions. The expression of P2X3, TRPV1, and TRPA1 in DRG neurons was investigated by quantitative real-time RT-PCR, Western blot, and immunofluorescence. The involvement of the PLCβ3/PKCε signaling pathway was also determined. The behavior test for mechanical allodynia and thermal hyperalgesia was performed. Results: SL-NH2 induced upregulation of P2X3, TRPV1, and TRPA1 through phosphorylation of phospholipase Cβ3 (PLCβ3) and protein kinase Cε (PKCε) signaling pathway in DRG neurons in vitro and in vivo. SL-NH2 also elevated the proportion of P2X3-, TRPV1-, and TRPA1-expressing neurons. The upregulation of P2X3, TRPV1, and TRPA1 and phosphorylation of PLCβ3 and PKCε in DRG neurons was paralleled with mechanical allodynia and thermal hyperalgesia behaviors in rats. Conclusions: The data of the present study imply that SL-NH2 as a noxious stimulus activates PAR2 which induces TRPV1, TRPA1, and P2X3 upregulation through PLCβ3/PKCε signaling pathway, thereby decreasing activation thresholds and increasing excitability, resulting in sustained nociceptive activity in DRG neurons, and then causing mechanical allodynia and thermal hyperalgesia behaviors. These data expanded our knowledge about PAR2-mediated pain sensitivity and its relationship with TRPV1, TRPA1, and P2X3 and provided new opportunities on management of pain behaviors.


Sign in / Sign up

Export Citation Format

Share Document