Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered during Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham-Controlled Crossover Study

2017 ◽  
Vol 10 (1) ◽  
pp. e8
Author(s):  
Gregory L. Sahlem ◽  
Bashar W. Badran ◽  
Jonathan J. Halford ◽  
Nolan R. Williams ◽  
Jeffrey E. Korte ◽  
...  
2021 ◽  
Vol 11 (4) ◽  
pp. 410
Author(s):  
Simon Ruch ◽  
Kristoffer Fehér ◽  
Stephanie Homan ◽  
Yosuke Morishima ◽  
Sarah Maria Mueller ◽  
...  

Slow-wave sleep (SWS) has been shown to promote long-term consolidation of episodic memories in hippocampo–neocortical networks. Previous research has aimed to modulate cortical sleep slow-waves and spindles to facilitate episodic memory consolidation. Here, we instead aimed to modulate hippocampal activity during slow-wave sleep using transcranial direct current stimulation in 18 healthy humans. A pair-associate episodic memory task was used to evaluate sleep-dependent memory consolidation with face–occupation stimuli. Pre- and post-nap retrieval was assessed as a measure of memory performance. Anodal stimulation with 2 mA was applied bilaterally over the lateral temporal cortex, motivated by its particularly extensive connections to the hippocampus. The participants slept in a magnetic resonance (MR)-simulator during the recordings to test the feasibility for a future MR-study. We used a sham-controlled, double-blind, counterbalanced randomized, within-subject crossover design. We show that stimulation vs. sham significantly increased slow-wave density and the temporal coupling of fast spindles and slow-waves. While retention of episodic memories across sleep was not affected across the entire sample of participants, it was impaired in participants with below-average pre-sleep memory performance. Hence, bi-temporal anodal direct current stimulation applied during sleep enhanced sleep parameters that are typically involved in memory consolidation, but it failed to improve memory consolidation and even tended to impair consolidation in poor learners. These findings suggest that artificially enhancing memory-related sleep parameters to improve memory consolidation can actually backfire in those participants who are in most need of memory improvement.


2022 ◽  
Author(s):  
Leandro H. Grecco

BACKGROUND The performance of a task depends on ongoing brain activity which can be influenced by attention, excitement or motivation. Scientific studies confirm that mindfulness leads to better performance, health and well-being. However, these cognitive efficiency modulating factors are nonspecific, can be difficult to control, and are not suitable to specifically facilitate neural processing. OBJECTIVE The aim of the present study is to evaluate the effects of tDCS associated with Neurofeedback on declarative memory and cerebral blood flow in university students. METHODS In this work, we will use Transcranial Direct Current Stimulation (tDCS), a low-cost physical resource, easy to apply and few adverse effects, associated with a Neurofeedback resource. This, in turn, has been shown to be a training program capable of improving working memory function. RESULTS The trial began in December 2021 and we are currently performing the statistical analysis for the secondary outcomes. CONCLUSIONS We believe that the resources used in this study can help improve some aspects of declarative memory, since learning and memory processes modify the brain. Strategies to enhance the acquisition, storage and use of information must be able to sensitize (motivate) and involve volunteers in the learning process, thus clarifying their role CLINICALTRIAL https://ensaiosclinicos.gov.br/rg/RBR-4m5j4s


Sign in / Sign up

Export Citation Format

Share Document