scholarly journals Bi-Temporal Anodal Transcranial Direct Current Stimulation during Slow-Wave Sleep Boosts Slow-Wave Density but Not Memory Consolidation

2021 ◽  
Vol 11 (4) ◽  
pp. 410
Author(s):  
Simon Ruch ◽  
Kristoffer Fehér ◽  
Stephanie Homan ◽  
Yosuke Morishima ◽  
Sarah Maria Mueller ◽  
...  

Slow-wave sleep (SWS) has been shown to promote long-term consolidation of episodic memories in hippocampo–neocortical networks. Previous research has aimed to modulate cortical sleep slow-waves and spindles to facilitate episodic memory consolidation. Here, we instead aimed to modulate hippocampal activity during slow-wave sleep using transcranial direct current stimulation in 18 healthy humans. A pair-associate episodic memory task was used to evaluate sleep-dependent memory consolidation with face–occupation stimuli. Pre- and post-nap retrieval was assessed as a measure of memory performance. Anodal stimulation with 2 mA was applied bilaterally over the lateral temporal cortex, motivated by its particularly extensive connections to the hippocampus. The participants slept in a magnetic resonance (MR)-simulator during the recordings to test the feasibility for a future MR-study. We used a sham-controlled, double-blind, counterbalanced randomized, within-subject crossover design. We show that stimulation vs. sham significantly increased slow-wave density and the temporal coupling of fast spindles and slow-waves. While retention of episodic memories across sleep was not affected across the entire sample of participants, it was impaired in participants with below-average pre-sleep memory performance. Hence, bi-temporal anodal direct current stimulation applied during sleep enhanced sleep parameters that are typically involved in memory consolidation, but it failed to improve memory consolidation and even tended to impair consolidation in poor learners. These findings suggest that artificially enhancing memory-related sleep parameters to improve memory consolidation can actually backfire in those participants who are in most need of memory improvement.

2019 ◽  
Author(s):  
Matthias Grieder ◽  
Yosuke Morishima ◽  
Stephanie Winkelbeiner ◽  
Sarah M Mueller ◽  
Kristoffer Feher ◽  
...  

Background: Sleep is crucial for sound memory functioning in humans. In particular, the slow waves that occur predominantly during slow wave sleep (SWS) are associated with hippocampus-dependent declarative memory consolidation. Making use of this association, boosting SWS to improve memory performance would be appealing for both healthy and memory-impaired populations. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that modulates the brain’s excitability and has shown promising results in improving memory performance. However, owing to differing stimulation protocols and contradictory findings, there is insufficient evidence for the efficacy of tDCS-modulated hippocampal excitability on SWS and sleep-dependent memory consolidation.Hypotheses: We aimed to enhance sleep-dependent memory consolidation and augment slow wave amplitudes.Methods: We applied bi-temporal anodal tDCS to the left and right lateral temporal lobes of 31 healthy participants in a double-blind, sham-controlled, randomized crossover study. State-dependent tDCS was administered during slow wave sleep only. A pair-associate episodic memory task was used to assess sleep-dependent memory consolidation with face-occupation stimuli with baseline retrieval before sleep and delayed retrieval after sleep.Results: Sleep-dependent memory consolidation was increased by tDCS only in participants who showed above-average performance (i.e. high performers) in baseline memory retrieval. Moreover, tDCS increased the slow wave amplitudes compared to sham.Conclusions: When targeting a specialized brain mechanism such as memory consolidation with tDCS during slow wave sleep, only those who were high performers at baseline achieved a memory boost.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A34-A34
Author(s):  
E M Wernette ◽  
K M Fenn

Abstract Introduction Slow wave sleep (SWS) strengthens declarative memory for information studied for a later test. However, research on the effect of sleep on information that is not intentionally remembered is scare. Previous research from our lab suggests sleep consolidates some, but not all, information that has been encoded incidentally, meaning that it has been acted on but not intentionally remembered. It remains unclear what determines which information benefits from sleep-dependent consolidation processes and what aspects of sleep are related to these mnemonic benefits. In two experiments, we test the hypothesis that sleep consolidates strong but not weak memory traces following incidental encoding, and assess the relationship between memory performance and objective sleep characteristics. Methods In Experiment 1, participants rated words one (weak traces) or three times (strong traces) in a deep or shallow incidental encoding task. Participants either rated words on a scale from ‘concrete’ to ‘abstract’ (deep) or counted the vowels in the words (shallow). Following a 12-hour period containing sleep or wakefulness, participants took a surprise memory test. In Experiment 2, participants rated words one or three times in the deep encoding task, received an 8-hour sleep opportunity with polysomnography, and took the surprise memory test. Results In Experiment 1, participants remembered words better after sleep than wake regardless of whether words were encoded one or three times, but only after deep encoding. Sleep did not consolidate information following shallow encoding. Experiment 2 is ongoing, but we predict that the amount of SWS will correlate positively with memory. Conclusion Results thus far suggest sleep may have consolidated information based on the strength of memory traces. Because deep encoding results in stronger memory traces than shallow encoding, this work is broadly consistent with theories of memory consolidation that predict sleep is more beneficial for strong memory traces than weak, such as the synaptic downscaling hypothesis. Support N/A


Sign in / Sign up

Export Citation Format

Share Document